Deep reinforcement learning for quantum gate control

被引:93
作者
An, Zheng [1 ,2 ]
Zhou, D. L. [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
关键词
GAME; GO;
D O I
10.1209/0295-5075/126/60002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
How to implement multi-qubit gates efficiently with high precision is essential for realizing universal fault-tolerant computing. For a physical system with some external controllable parameters, it is a great challenge to control the time dependence of these parameters to achieve a target multi-qubit gate efficiently and precisely. Here we construct a dueling double deep Q-learning neural network (DDDQN) to find out the optimized time dependence of controllable parameters to implement two typical quantum gates: a single-qubit Hadamard gate and a two-qubit CNOT gate. Compared with traditional optimal control methods, this deep reinforcement learning method can realize efficient and precise gate control without requiring any gradient information during the learning process. This work attempts to pave the way to investigate more quantum control problems with deep reinforcement learning techniques. Copyright (C) EPLA, 2019.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production [J].
Acharya, B. ;
Alexandre, J. ;
Baines, S. ;
Benes, P. ;
Bergmann, B. ;
Bernabeu, J. ;
Bevan, A. ;
Branzas, H. ;
Campbell, M. ;
Cecchini, S. ;
Cho, Y. M. ;
de Montigny, M. ;
De Roeck, A. ;
Ellis, J. R. ;
El Sawy, M. ;
Fairbairn, M. ;
Felea, D. ;
Frank, M. ;
Hays, J. ;
Hirt, A. M. ;
Janecek, J. ;
Kim, D. -W. ;
Korzenev, A. ;
Lacarrere, D. H. ;
Lee, S. C. ;
Leroy, C. ;
Levi, G. ;
Lionti, A. ;
Mamuzic, J. ;
Margiotta, A. ;
Mauri, N. ;
Mavromatos, N. E. ;
Mermod, P. ;
Mieskolainen, M. ;
Millward, L. ;
Mitsou, V. A. ;
Orava, R. ;
Ostrovskiy, I. ;
Papavassiliou, J. ;
Parker, B. ;
Patrizii, L. ;
Pavalas, G. E. ;
Pinfold, J. L. ;
Popa, V. ;
Pozzato, M. ;
Pospisil, S. ;
Rajantie, A. ;
Ruiz de Austri, R. ;
Sahnoun, Z. ;
Sakellariadou, M. .
PHYSICAL REVIEW LETTERS, 2019, 123 (02)
[2]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226
[3]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[4]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[5]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/nphys4035, 10.1038/NPHYS4035]
[6]  
CHRISTOPHER WATKINS, 1989, THESIS
[7]   Quantum computational supremacy [J].
Harrow, Aram W. ;
Montanaro, Ashley .
NATURE, 2017, 549 (7671) :203-209
[8]   Fast automated analysis of strong gravitational lenses with convolutional neural networks [J].
Hezaveh, Yashar D. ;
Levasseur, Laurence Perreault ;
Marshall, Philip J. .
NATURE, 2017, 548 (7669) :555-+
[9]   Onset of a quantum phase transition with a trapped ion quantum simulator [J].
Islam, R. ;
Edwards, E. E. ;
Kim, K. ;
Korenblit, S. ;
Noh, C. ;
Carmichael, H. ;
Lin, G. -D. ;
Duan, L. -M. ;
Wang, C. -C. Joseph ;
Freericks, J. K. ;
Monroe, C. .
NATURE COMMUNICATIONS, 2011, 2
[10]   Quasiparticle engineering and entanglement propagation in a quantum many-body system [J].
Jurcevic, P. ;
Lanyon, B. P. ;
Hauke, P. ;
Hempel, C. ;
Zoller, P. ;
Blatt, R. ;
Roos, C. F. .
NATURE, 2014, 511 (7508) :202-+