Dual Adaptive Control of Bimanual Manipulation with Online Fuzzy Parameter Tuning

被引:0
|
作者
Smith, Alex [1 ]
Yang, Chenguang [1 ,2 ]
Ma, Hongbin [3 ]
Culverhouse, Phil [1 ]
Cangelosi, Angelo [1 ]
Burdet, Etienne [4 ]
机构
[1] Univ Plymouth, Ctr Robot & Neural Syst, Plymouth PL4 8AA, Devon, England
[2] S China Univ Technol, Coll Automat Sci & Engn, Key Lab Autonomous Syst & Network Control, Guangzhou 510640, Guangdong, Peoples R China
[3] Beijing Inst Technol, Sch Automat, State Key Lab Intelligent Control & Decis Complex, Beijing 100081, Peoples R China
[4] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
UNSTABLE DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A biomimetic controller with online adaptation of impedance and force is applied to a full kinematic and dynamic model of the Baxter bimanual robot. A set of fuzzy logic engines are proposed to infer the values of tuning gains which affect the control performance and control effort of the controller, which would conventionally be set to a static value based on expert knowledge of the controller; the aim of this being to avoid the use of arbitary values to set these values. A simulated experiment is carried out, where the Baxter robot is required to move an object through a trajectory while subjected to two different disturbance forces in four phases. The controller with fuzzy inferred control gains is compared against the same controller with fixed gains to gauge the effectiveness of the new method. Results show that fuzzy inference of control gains impart an improvement in both tracking error and control effort.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 50 条
  • [21] Online Parameter Estimation Methods for Adaptive Cruise Control Systems
    Wang, Yanbing
    Gunter, George
    Nice, Matthew
    Delle Monache, Maria Laura
    Work, Daniel B.
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2021, 6 (02): : 288 - 298
  • [22] Shared control-based bimanual robot manipulation
    Rakita, Daniel
    Mutlu, Bilge
    Gleicher, Michael
    Hiatt, Laura M.
    SCIENCE ROBOTICS, 2019, 4 (30)
  • [23] Adaptive iterative learning PID control based on Markov parameter tuning
    Yin J.-H.
    Bo C.-M.
    Liu Y.-P.
    Yang L.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (06): : 1490 - 1498
  • [24] Adaptive control scheme using real time tuning of the parameter estimator
    Maitelli, AL
    Yoneyama, T
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (03): : 241 - 248
  • [25] Parameter sensitivity in tuning fuzzy controllers
    Zhou, J
    Eklund, P
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 390 - 393
  • [26] Parameter tuning of stable fuzzy controllers
    Dieulot, JY
    Borne, P
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2002, 33 (03) : 301 - 312
  • [27] Parameter tuning method of fuzzy controllers
    Wang Shuang-xin
    Wang Yin-song
    Zhu Heng-jun
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 1185 - 1187
  • [28] Parameter Tuning of Stable Fuzzy Controllers
    J.-Y. Dieulot
    P. Borne
    Journal of Intelligent and Robotic Systems, 2002, 33 : 301 - 312
  • [29] Adaptive Parameter Estimation for Aerial Manipulation
    Baraban, Gabriel
    Sheckells, Matthew
    Kim, Soowon
    Kobilarov, Marin
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 614 - 619
  • [30] Predictive Approach for Sensorless Bimanual Teleoperation Under Random Time Delays With Adaptive Fuzzy Control
    Lu, Zhenyu
    Huang, Panfeng
    Liu, Zhengxiong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) : 2439 - 2448