Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration

被引:68
作者
Zhu, Shiyang [1 ]
Lo, G. Q. [1 ]
Kwong, D. L. [1 ]
机构
[1] ASTAR, Inst Microelect, Singapore 117685, Singapore
关键词
ATOMIC LAYER DEPOSITION; WAVE-GUIDE; SILICON; FILMS; PLASMONICS; COMPONENTS; PHOTONICS;
D O I
10.1364/OE.22.017930
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An ultra-compact electro-absorption (EA) modulator operating around 1.55-mu m telecom wavelengths is proposed and theoretically investigated. The modulator is comprised of a stack of TiN/HfO2/ITO/Cu conformally deposited on a single-mode stripe waveguide to form a hybrid plasmonic waveguide (HPW). Since the thin ITO layer can behave as a semiconductor, the stack itself forms a MOS capacitor. A voltage is applied between the Cu and TiN layers to change the electron concentration of ITO (N-ITO), which in turn changes its permittivity as well as the propagation loss of HPW. For a HPW comprised of a Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN stack on a 400-nm x 340-nm-Si stripe waveguide, the propagation loss for the 1.55-mu m TE (TM) mode increases from 1.6 (1.4) to 23.2 (23.9) dB/mu m when the average N-ITO in the 3-nm ITO layer increases from 2 x 10(20) to 7 x 10(20) cm(-3), which is achieved by varying the voltage from -2 to 4 V if the initial N-ITO is 3.5 x 10(20) cm(-3). As a result, a 1-mu m-long EA modulator inserted in the 400-nm x 340-nm-Si stripe waveguide exhibits insertion loss of 2.9 (3.2) dB and modulation depth of 19.9 (15.2) dB for the TE (TM) mode. The modulation speed is similar to 11 GHz, limited by the RC delay, and the energy consumption is similar to 0.4 pJ/bit. The stack can also be deposited on a low-index-contrast waveguide such as Si3N4. For example, a 4-mu m-long EA modulator inserted in an 800-nm x 600-nm-Si3N4 stripe waveguide exhibits insertion loss of 6.3 (3.5) dB and modulation depth of 16.5 (15.8) dB for the TE (TM) mode. The influences of the ITO, TiN, HfO2 layers and the beneath dielectric core, as well as the processing tolerance, on the performance of the proposed EA modulator are systematically investigated. (C) 2014 Optical Society of America
引用
收藏
页码:17930 / 17947
页数:18
相关论文
共 29 条
[1]   Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials [J].
Babicheva, Viktoriia E. ;
Kinsey, Nathaniel ;
Naik, Gururaj V. ;
Ferrera, Marcello ;
Lavrinenko, Andrei V. ;
Shalaev, Vladimir M. ;
Boltasseva, Alexandra .
OPTICS EXPRESS, 2013, 21 (22) :27326-27337
[2]   Photonic Network-on-Chip Architectures Using Multi layer Deposited Silicon Materials for High-Performance Chip Multiprocessors [J].
Biberman, Aleksandr ;
Preston, Kyle ;
Hendry, Gilbert ;
Sherwood-Droz, Nicolas ;
Chan, Johnnie ;
Levy, Jacob S. ;
Lipson, Michal ;
Bergman, Keren .
ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2011, 7 (02)
[3]   PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator [J].
Dionne, Jennifer A. ;
Diest, Kenneth ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2009, 9 (02) :897-902
[4]   Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors [J].
Elam, Jeffrey W. ;
Baker, David A. ;
Martinson, Alex B. F. ;
Pellin, Michael J. ;
Hupp, Joseph T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (06) :1938-1945
[5]   Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies [J].
Feigenbaum, Eyal ;
Diest, Kenneth ;
Atwater, Harry A. .
NANO LETTERS, 2010, 10 (06) :2111-2116
[6]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[7]   Flexible integrated photonics: where materials, mechanics and optics meet [Invited] [J].
Hu, Juejun ;
Li, Lan ;
Lin, Hongtao ;
Zhang, Ping ;
Zhou, Weidong ;
Ma, Zhenqiang .
OPTICAL MATERIALS EXPRESS, 2013, 3 (09) :1313-1331
[8]  
Kim HK, 2002, J KOREAN PHYS SOC, V41, P739
[9]   Photonic Signal Processing on Electronic Scales: Electro-Optical Field-Effect Nanoplasmonic Modulator [J].
Krasavin, A. V. ;
Zayats, A. V. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[10]  
Lockwood DJ, 2011, TOP APPL PHYS, V119, P1, DOI 10.1007/978-3-642-10506-7