Joint Time Delay and Frequency Estimation Without Eigen-Decomposition

被引:9
|
作者
Qasaymeh, M. M. [1 ]
Gami, Hiren [2 ]
Tayem, Nizar [3 ]
Sawan, M. E. [2 ]
Pendse, Ravi [2 ]
机构
[1] Tafila Tech Univ, Dept Elect Engn, Tafila, Jordan
[2] Wichita State Univ, Wichita, KS 67208 USA
[3] Miami Univ, Engn Technol Dept, Middletown, OH 45042 USA
关键词
Delay and frequency estimation; MUSIC; propagator method; root-MUSIC; STATE-SPACE;
D O I
10.1109/LSP.2009.2016483
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we addressed the problem of estimating the time delay and the frequencies of noisy sinusoidal signals received at two spatially separated sensors. We employ the Propagator Method (PM) in conjunction with the well-known MUSIC/root-MUSIC algorithm; the proposed method would generate estimates of the unknown parameters. Such estimates are based on the observation and/or covariance matrices. Moreover, the PM does not require the eigenvalue decomposition (EVD) or singular value decomposition (SVD) of the cross-spectral matrix (CSM) of received signals; therefore, a significant improvement in computational load is achieved. Computer simulations are also included to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:422 / 425
页数:4
相关论文
共 50 条
  • [1] FREQUENCY ESTIMATION BY PRINCIPAL COMPONENT AR SPECTRAL ESTIMATION METHOD WITHOUT EIGEN-DECOMPOSITION
    KAY, SM
    SHAW, AK
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (01): : 95 - 101
  • [2] LORAN-C SKYWAVE DELAY ESTIMATION USING EIGEN-DECOMPOSITION TECHNIQUES
    BIAN, Y
    LAST, JD
    ELECTRONICS LETTERS, 1995, 31 (02) : 133 - 134
  • [3] Approximate normalized cuts without Eigen-decomposition
    Jia, Hongjie
    Ding, Shifei
    Du, Mingjing
    Xue, Yu
    INFORMATION SCIENCES, 2016, 374 : 135 - 150
  • [4] A sparse eigen-decomposition estimation in semiparametric regression
    Zhu, Li-Ping
    Yu, Zhou
    Zhu, Li-Xing
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) : 976 - 986
  • [5] Eigen-Decomposition of Quaternions
    Roger M. Oba
    Advances in Applied Clifford Algebras, 2018, 28
  • [6] Eigen-Decomposition of Quaternions
    Oba, Roger M.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2018, 28 (05)
  • [7] Toward computational singular perturbation (CSP) without eigen-decomposition
    Zhao, Peng
    Lam, S. H.
    COMBUSTION AND FLAME, 2019, 209 : 63 - 73
  • [8] Eigen-decomposition techniques for Loran-C skywave estimation
    Bian, Y
    Last, D
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1997, 33 (01) : 117 - 125
  • [9] Higher-Order Stabilized Perturbation for Recursive Eigen-Decomposition Estimation
    Mucchielli, Paul
    Bhowmik, Basuraj
    Hazra, Budhaditya
    Pakrashi, Vikram
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2020, 142 (06):
  • [10] Isomorphism of balance theory and Eigen-decomposition
    Kosugi, K
    Fujisawa, T
    Fujihara, T
    SOCIOLOGICAL THEORY AND METHODS, 2004, 19 (01) : 87 - 100