Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions

被引:161
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] Shanghai Univ Elect Power, Coll Math & Phys, Shanghai 200090, Peoples R China
[5] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[6] North West Univ, Dept Math Sci, Ma fi keng Campus, ZA-2735 Mmabatho, South Africa
基金
中国国家自然科学基金;
关键词
Symbolic computation; lump solution; interaction solution; 35Q51; 35Q53; 37K40; LINEAR SUPERPOSITION PRINCIPLE; INTEGRABLE SYMPLECTIC MAP; LUMP-KINK SOLUTIONS; DE-VRIES EQUATION; RATIONAL SOLUTIONS; SOLITON-SOLUTIONS; SYMMETRY; SYSTEM;
D O I
10.1007/s11464-019-0771-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Abundant exact interaction solutions, including lump-soliton, lump-kink, and lump-periodic solutions, are computed for the Hirota-Satsuma-Ito equation in (2 + 1)-dimensions, through conducting symbolic computations with Maple. The basic starting point is a Hirota bilinear form of the Hirota-Satsuma-Ito equation. A few three-dimensional plots and contour plots of three special presented solutions are made to shed light on the characteristic of interaction solutions.
引用
收藏
页码:619 / 629
页数:11
相关论文
共 62 条
[1]  
Ablowitz MJ, 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
[Anonymous], 2016, INT J MOD PHYS B, DOI DOI 10.1142/S021797921640018X
[3]   Memories of Hirota's method: application to the reduced Maxwell-Bloch system in the early 1970s [J].
Caudrey, P. J. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1939) :1215-1227
[4]   Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (03) :525-534
[5]   The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation [J].
Dong, Huanhe ;
Zhang, Yong ;
Zhang, Xiaoen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 :354-365
[6]   ARE ALL THE EQUATIONS OF THE KADOMTSEV-PETVIASHVILI HIERARCHY INTEGRABLE [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2848-2852
[7]  
Drazin P.G., 1989, Solitons: an introduction, V2
[8]   LUMP SOLUTIONS OF THE BKP EQUATION [J].
GILSON, CR ;
NIMMO, JJC .
PHYSICS LETTERS A, 1990, 147 (8-9) :472-476
[9]  
Harun-Or-Roshid, ARXIV161104478
[10]  
Hietarinta J., 1997, Integrability of Nonlinear Systems. Proceedings of the CIMPA School, P95