A note lower bounds for the Estrada index

被引:2
作者
Rodriguez, Jonnathan [1 ]
Aguayo, Juan L. [2 ]
Carmona, Juan R. [2 ]
Jahanbani, Akbar [3 ]
机构
[1] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Av Angamos 0601, Antofagasta, Chile
[2] Univ Austral Chile, Inst Ciencias Fis & Matemat, Independencia 631, Valdivia, Chile
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Estrada index; Adjacency matrix; Lower bound; Randic index; Graph;
D O I
10.1016/j.disc.2021.112303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph on n vertices and lambda(1), lambda(2), . . . , lambda(n) its eigenvalues. The Estrada index of G is an invariant that is calculated from the eigenvalues of the adjacency matrix of a graph. In this paper, we present some new lower bounds for the Estrada index of graphs and in particular of bipartite graphs that only depend on the number of vertices, the number of edges, Randic index, maximum and minimum degree and diameter. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 38 条
  • [1] [Anonymous], SCI MAGNA
  • [2] [Anonymous], 2007, KRAGUJEV J SCI
  • [3] [Anonymous], 2011, Selected Topics on Applications of Graph Spectra
  • [4] New Lower Bounds for Estrada Index
    Bamdad, Hamidreza
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 683 - 688
  • [5] Bollobás B, 1998, ARS COMBINATORIA, V50, P225
  • [6] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [7] Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy
    Caporossi, G
    Cvetkovic, D
    Gutman, I
    Hansen, P
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (06): : 984 - 996
  • [8] An increasing sequence of lower bounds for the Estrada index of graphs and matrices
    Carmona, Juan R.
    Rodriguez, Jonnathan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 : 200 - 211
  • [9] Clemente GP, 2017, MATCH-COMMUN MATH CO, V77, P673
  • [10] Cvetkovi D., 1980, SPECTRA GRAPHS THEOR