The growth exponent for planar loop-erased random walk

被引:31
作者
Masson, Robert [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Random walk; loop-erased random walk; Schramm-Loewner evolution; UNIFORM SPANNING-TREES; CRITICAL PERCOLATION; CONFORMAL-INVARIANCE; SCALING LIMITS; SLE; CONVERGENCE;
D O I
10.1214/EJP.v14-651
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any discrete lattice of R(2).
引用
收藏
页码:1012 / 1073
页数:62
相关论文
共 30 条
[1]   Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions [J].
Agrawal, H ;
Dhar, D .
PHYSICAL REVIEW E, 2001, 63 (05)
[2]  
BARLOW M, 2 MOMENT ESTIM UNPUB
[3]   The dimension of the SLE curves [J].
Beffara, Vincent .
ANNALS OF PROBABILITY, 2008, 36 (04) :1421-1452
[4]   Critical percolation exploration path and SLE 6:: a proof of convergence [J].
Camia, Federico ;
Newman, Charles M. .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (3-4) :473-519
[5]   Two-dimensional critical percolation: The full scaling limit [J].
Camia, Federico ;
Newman, Charles M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) :1-38
[6]   The Abelian sandpile and related models [J].
Dhar, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 263 (1-4) :4-25
[7]   The asymptotic determinant of the discrete Laplacian [J].
Kenyon, R .
ACTA MATHEMATICA, 2000, 185 (02) :239-286
[8]   HITTING PROBABILITIES OF RANDOM-WALKS ON ZD [J].
KESTEN, H .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 25 (02) :165-184
[9]  
Lawler G.F., 1991, Intersections of Random Walks
[10]  
Lawler GF, 1999, PROG PROBAB, V44, P197