Simulation of a Four-Component Potts Model on a Hexagonal Lattice by the Wang-Landau Method with Controlled Accuracy

被引:2
作者
Fadeeva, M. A. [1 ]
Shchur, L. N. [1 ,2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow 101100, Russia
[2] Russian Acad Sci, Landau Inst Theoret Phys, Chernogolovka 142432, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
CONFORMAL-INVARIANCE; PHASE-TRANSITIONS; FINITE; UNIVERSALITY;
D O I
10.1134/S1063776122120032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical behavior of a four-component Potts model on a hexagonal lattice is investigated numerically. A modified Wang-Landau method is used with controlled accuracy of estimating the density of states (DOS). The finite-dimensional analysis of the results confirms the presence of a second-order phase transition with critical exponents corresponding to the universality class of the two-dimensional four-component Potts model.
引用
收藏
页码:869 / 875
页数:7
相关论文
共 33 条
[1]   Control of accuracy in the Wang-Landau algorithm [J].
Barash, L. Yu. ;
Fadeeva, M. A. ;
Shchur, L. N. .
PHYSICAL REVIEW E, 2017, 96 (04)
[2]   Fast algorithm to calculate density of states [J].
Belardinelli, R. E. ;
Pereyra, V. D. .
PHYSICAL REVIEW E, 2007, 75 (04)
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[5]   CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :L385-L387
[6]   SCALING THEORY OF THE POTTS-MODEL MULTICRITICAL POINT [J].
CARDY, JL ;
NAUENBERG, M ;
SCALAPINO, DJ .
PHYSICAL REVIEW B, 1980, 22 (05) :2560-2568
[7]   Diversity of critical behavior within a universality class [J].
Dohm, Volker .
PHYSICAL REVIEW E, 2008, 77 (06)
[8]  
Dotsenko V. S., 1982, Soviet Physics - JETP, V56, P406
[9]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348
[10]   On the mixing time in the Wang-Landau algorithm [J].
Fadeeva, Marina ;
Shchur, Lev .
COMPUTER SIMULATIONS IN PHYSICS AND BEYOND (CSP2017), 2018, 955