Neonatal Heart Responds to Pressure Overload With Differential Alterations in Various Cardiomyocyte Maturation Programs That Accommodate Simultaneous Hypertrophy and Hyperplasia

被引:7
作者
Ding, Xiaoning [1 ,2 ]
Wang, Shoubao [3 ,5 ]
Wang, Ye [1 ,2 ]
Yang, Junjie [1 ,2 ]
Bao, Nan [4 ]
Liu, Jinfen [3 ]
Zhang, Zhen [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Childrens Med Ctr, Pediat Translat Med Inst, Sch Med, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Pediat Congenital Heart Dis Inst, Sch Med, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Childrens Med Ctr, Dept Thorac & Cardiovasc Surg, Sch Med, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Childrens Med Ctr, Dept Pediat Surg, Sch Med, Shanghai, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Dept Plast & Reconstruct Surg, Sch Med, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
cardiomyocyte maturation; pressure overload; pulmonary artery banding; neonatal heart; Metabolic transition; MACROPHAGES; TRANSITION; GROWTH;
D O I
10.3389/fcell.2020.596960
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Pressure overload is one of the pathophysiological conditions commonly associated with right-sided congenital heart disease (CHD). Patients suffer from this condition right after birth. However, little is known about how neonatal heart reacts to it. We have previously established a pulmonary artery banding (PAB) model in neonatal rat. Here we show that PAB accelerated transition of mononuclear cardiomyocytes into multinucleated cells to promote hypertrophic growth in neonatal heart. The elevated afterload significantly increased the mitotic activities of neonatal cardiomyocytes. Consistent with the proliferative potential, the elevated pressure overload also increased cytokinetic marker counts of cardiomyocytes. Using cardiomyocyte-specific lineage tracing, we noticed a clonal expansion of rare unlabeled cardiomyocytes in the PAB group, revealing a subgroup of cardiomyocytes with a strong capability of proliferation. In addition, PAB hearts at post-banding day 7 didn't have the accumulation of macrophages, which is an immune response essential for neonatal heart regeneration in injury models. Transcriptomic analyses revealed that neonatal PAB induced an expression profile featuring both cardiomyocyte hypertrophy, such as highly activated translation, oxidative phosphorylation, and mitochondrial biogenesis programs etc., and immature cardiomyocyte, such as enhanced cell cycle activities and glycolytic metabolism, down-regulated cytoskeleton and ion channel gene expression, and maintenance of fetal-specific sarcomeric isoforms etc. It indicates that pressure overload has differential impacts on various cardiomyocyte maturation (CM) programs that may contribute to the concurrent cardiomyocyte hypertrophy and hyperplasia. The bivalent status of transcriptional profile highlights the plasticity of neonatal cardiomyocytes that can be exploited to adapt the postnatal environment.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Neonatal cardiomyocyte ploidy reveals critical windows of heart development [J].
Anatskaya, Olga V. ;
Sidorenko, Nina V. ;
Beyer, Tamara V. ;
Vinogradov, Alexander E. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2010, 141 (01) :81-91
[2]   Macrophages are required for neonatal heart regeneration [J].
Aurora, Arin B. ;
Porrello, Enzo R. ;
Tan, Wei ;
Mahmoud, Ahmed I. ;
Hi, Joseph A. ;
Bassel-Duby, Rhonda ;
Sadek, Hesham A. ;
Olsonl, Eric N. .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (03) :1382-1392
[3]   Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm [J].
Aye, Christina Y. L. ;
Lewandowski, Adam J. ;
Lamata, Pablo ;
Upton, Ross ;
Davis, Esther ;
Ohuma, Eric O. ;
Kenworthy, Yvonne ;
Boardman, Henry ;
Wopperer, Samuel ;
Packham, Alice ;
Adwani, Satish ;
McCormick, Kenny ;
Papageorghiou, Aris T. ;
Leeson, Paul .
PEDIATRIC RESEARCH, 2017, 82 (01) :36-46
[4]  
Bailleul D., 2020, LONG DISTANCE DISPER, DOI [10.1101/2020.06.08.139857, DOI 10.1101/2020.06.08.139857]
[5]   Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression [J].
Cardoso, Alisson C. ;
Lam, Nicholas T. ;
Savla, Jainy J. ;
Nakada, Yuji ;
Pereira, Ana Helena M. ;
Elnwasany, Abdallah ;
Menendez-Montes, Ivan ;
Ensley, Emily L. ;
Petric, Ursa Bezan ;
Sharma, Gaurav ;
Sherry, A. Dean ;
Malloy, Craig R. ;
Khemtong, Chalermchai ;
Kinter, Michael T. ;
Tan, Wilson Lek Wen ;
Anene-Nzelu, Chukwuemeka G. ;
Foo, Roger Sik-Yin ;
Ngoc Uyen Nhi Nguyen ;
Li, Shujuan ;
Ahmed, Mahmoud Salama ;
Elhelaly, Waleed M. ;
Abdisalaam, Salim ;
Asaithamby, Aroumougame ;
Xing, Chao ;
Kanchwala, Mohammed ;
Vale, Gonalo ;
Eckert, Kaitlyn M. ;
Mitsche, Matthew A. ;
McDonald, Jeffrey G. ;
Hill, Joseph A. ;
Huang, Linzhang ;
Shaul, Philip W. ;
Szweda, Luke, I ;
Sadek, Hesham A. .
NATURE METABOLISM, 2020, 2 (02) :167-+
[6]   Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing [J].
Cui, Miao ;
Wang, Zhaoning ;
Chen, Kenian ;
Shah, Akansha M. ;
Tan, Wei ;
Duan, Lauren ;
Sanchez-Ortiz, Efrain ;
Li, Hui ;
Xu, Lin ;
Liu, Ning ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
DEVELOPMENTAL CELL, 2020, 53 (01) :102-+
[7]   Impaired myocardial development resulting in neonatal cardiac hypoplasia alters postnatal growth and stress response in the heart [J].
Drenckhahn, Joerg-Detlef ;
Strasen, Jette ;
Heinecke, Kirsten ;
Langner, Patrick ;
Yin, Kom Voy ;
Skole, Friederike ;
Hennig, Maria ;
Spallek, Bastian ;
Fischer, Robert ;
Blaschke, Florian ;
Heuser, Arnd ;
Cox, Timothy C. ;
Black, Mary Jane ;
Thierfelder, Ludwig .
CARDIOVASCULAR RESEARCH, 2015, 106 (01) :43-54
[8]   Increased Postnatal Cardiac Hyperplasia Precedes Cardiomyocyte Hypertrophy in a Model of Hypertrophic Cardiomyopathy [J].
Farrell, Emily T. ;
Grimes, Adrian C. ;
de Lange, Willem J. ;
Armstrong, Annie E. ;
Ralphe, J. Carter .
FRONTIERS IN PHYSIOLOGY, 2017, 8
[9]   Postnatal anatomical and functional development of the heart: A species comparison [J].
Hew, KW ;
Keller, KA .
BIRTH DEFECTS RESEARCH PART B-DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY, 2003, 68 (04) :309-320
[10]   Regulation of cardiomyocyte maturation during critical perinatal window [J].
Kannan, Suraj ;
Kwon, Chulan .
JOURNAL OF PHYSIOLOGY-LONDON, 2020, 598 (14) :2941-2956