Towards the Use of Artificial Intelligence on the Edge in Space Systems: Challenges and Opportunities

被引:151
作者
Furano, Gianluca [1 ]
Meoni, Gabriele [2 ]
Dunne, Aubrey [3 ]
Moloney, David [4 ]
Ferlet-Cavrois, Veronique [1 ]
Tavoularis, Antonis [1 ]
Byrne, Jonathan [4 ]
Buckley, Leonie [3 ]
Psarakis, Mihalis [5 ]
Voss, Kay-Obbe [6 ]
Fanucci, Luca [2 ]
机构
[1] European Space Agcy, European Space Res & Technol Ctr, Data Syst Div, NL-2201 AZ Noordwijk, Netherlands
[2] Univ Pisa, Informat Engn Dept, I-56122 Pisa, Italy
[3] Ubot Technol Ltd, Dublin D11 KXN4, Ireland
[4] Intel Ireland Ltd, Co Kildare W23 CX68, Kildare, Ireland
[5] Univ Piraeus, Dept Informat, Piraeus 18534, Greece
[6] GSI Helmholtz Ctr, D-64291 Darmstadt, Germany
关键词
XILINX ZYNQ-7000; MISSION;
D O I
10.1109/MAES.2020.3008468
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The market for remote sensing space-based applications is fundamentally limited by up- and downlink bandwidth and onboard compute capability for space data handling systems. This article details how the compute capability on these platforms can be vastly increased by leveraging emerging commercial off-the-shelf (COTS) system-on-chip (SoC) technologies. The orders of magnitude increase in processing power can then be applied to consuming data at source rather than on the ground allowing the deployment of value-added applications in space, which consume a tiny fraction of the downlink bandwidth that would be otherwise required. The proposed solution has the potential to revolutionize Earth observation (EO) and other remote sensing applications, reducing the time and cost to deploy new added value services to space by a great extent compared with the state of the art. This article also reports the first results in radiation tolerance and power/performance of these COTS SoCs for space-based applications and maps the trajectory toward low Earth orbit trials and the complete life-cycle for space-based artificial intelligence classifiers on orbital platforms and spacecraft. © 1986-2012 IEEE.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 49 条
[1]   RCU2-The ALICE TPC readout electronics consolidation for Run2 [J].
Alme, J. ;
Alt, T. ;
Bratrud, L. ;
Christiansen, P. ;
Costa, F. ;
David, E. ;
Gunji, T. ;
Kiss, T. ;
Langoy, R. ;
Lien, J. ;
Lippmann, C. ;
Oskarsson, A. ;
Rehman, A. Ur ;
Roed, K. ;
Rohrich, D. ;
Tarantola, A. ;
Torgersen, C. ;
Torsvik, I. Nikolai ;
Ullaland, K. ;
Velure, A. ;
Yang, S. ;
Zhao, C. ;
Appelshaeuser, H. ;
Osterman, L. .
JOURNAL OF INSTRUMENTATION, 2013, 8
[2]  
Amrbar M, 2015, IEEE RADIAT EFFECTS, P1
[3]  
[Anonymous], 2018, AI FLOOD DRIVES CHIP
[4]  
[Anonymous], 2016, EMNLP 2016
[5]  
[Anonymous], 2020, GR740 ESA NEXT GENER
[6]  
[Anonymous], 2019, ARIANEGROUP PTSCIENT
[7]  
[Anonymous], 2020, FUTURE EUROPEAN SPAC
[8]   Resource Characterisation of Personal-Scale Sensing Models on Edge Accelerators [J].
Antonini, Mattia ;
Vu, Tran Huy ;
Min, Chulhong ;
Montanari, Alessandro ;
Mathur, Akhil ;
Kawsar, Fahim .
PROCEEDINGS OF THE 2019 INTERNATIONAL WORKSHOP ON CHALLENGES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR INTERNET OF THINGS (AICHALLENGEIOT '19), 2019, :49-55
[9]   ALWAYS-ON VISION PROCESSING UNIT FOR MOBILE APPLICATIONS [J].
Barry, Brendan ;
Brick, Cormac ;
Connor, Fergal ;
Donohoe, David ;
Moloney, David ;
Richmond, Richard ;
O'Riordan, Martin ;
Toma, Vasile .
IEEE MICRO, 2015, 35 (02) :56-66
[10]   A digital CMOS design technique for SEU hardening [J].
Baze, MP ;
Buchner, SP ;
McMorrow, D .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2000, 47 (06) :2603-2608