Soil Moisture Inversion Using AMSR-E Remote Sensing Data: An artificial neural network approach

被引:7
作者
Xie, Xingmei [1 ]
Xu, Jingwen [1 ]
Zhao, Junfang [2 ]
Liu, Shuang [1 ]
Wang, Peng [1 ]
机构
[1] Sichuan Agr Univ, Coll Resources & Environm, Chengdu 611130, Peoples R China
[2] Chinese Acad Sci, Chinese Acad Metrolog Sci, Beijing 100008, Peoples R China
来源
ADVANCES IN CIVIL AND STRUCTURAL ENGINEERING III, PTS 1-4 | 2014年 / 501-504卷
关键词
Artificial neural network approach; soil moisture retrieval; AMSR-E;
D O I
10.4028/www.scientific.net/AMM.501-504.2073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this work artificial neural network with a back-propagation learning algorithm (BPNN) is employed to solve soil moisture retrieval for Sichuan Middle Hilly Area in China. Eighteen kinds of BPNN models have been developed using AMSR-E observations to retrieve soil moisture. The results show that the 18.7GHz band has some positive effect on improving soil moisture estimation accuracy while the 36.5GHz may interfere with deriving soil moisture, and vertical brightness temperature has a closer relationship with observed near-surface soil moisture than horizontal TB. The BPNN model driven by vertical and horizontal TB dataset at 6.9GHz and 10.7GHz frequency has the best performance of all the BPNN models withr value of 0.4968 and RMSE 10.2976%. Generally, the BPNN model is more suitable for soil moisture estimation than NASA product for the study area and can provide significant soil moisture information due to its ability of capturing non-linear and complex relationship.
引用
收藏
页码:2073 / +
页数:2
相关论文
共 9 条
[1]   Estimating soil moisture using remote sensing data: A machine learning approach [J].
Ahmad, Sajjad ;
Kalra, Ajay ;
Stephen, Haroon .
ADVANCES IN WATER RESOURCES, 2010, 33 (01) :69-80
[2]  
[Anonymous], 2008, J MOUNTAIN SCI, V26, P244
[3]   A semi-empirical inversion model for assessing surface soil moisture using AMSR-E brightness temperatures [J].
Chen, Xiu-zhi ;
Chen, Shui-sen ;
Zhong, Ruo-fei ;
Su, Yong-xian ;
Liao, Ji-shan ;
Li, Dan ;
Han, Liu-sheng ;
Li, Yong ;
Li, Xia .
JOURNAL OF HYDROLOGY, 2012, 456 :1-11
[4]   An evaluation of AMSR-E derived soil moisture over Australia [J].
Draper, Clara S. ;
Walker, Jeffrey P. ;
Steinle, Peter J. ;
de Jeu, Richard A. M. ;
Holmes, Thomas R. H. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :703-710
[5]   Artificial neural network models for the prediction of surface roughness in electrical discharge machining [J].
Markopoulos, Angelos P. ;
Manolakos, Dimitrios E. ;
Vaxevanidis, Nikolaos M. .
JOURNAL OF INTELLIGENT MANUFACTURING, 2008, 19 (03) :283-292
[6]   Soil moisture retrieval from AMSR-E [J].
Njoku, EG ;
Jackson, TJ ;
Lakshmi, V ;
Chan, TK ;
Nghiem, SV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :215-229
[7]   Artificial neural network for the estimation of soil moisture and surface roughness [J].
Abhishek Pandey ;
S. K. Jha ;
J. K. Srivastava ;
R. Prasad .
Russian Agricultural Sciences, 2010, 36 (6) :428-432
[8]   Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans [J].
Wigneron, JP ;
Calvet, JC ;
Pellarin, T ;
Van de Griend, AA ;
Berger, M ;
Ferrazzoli, P .
REMOTE SENSING OF ENVIRONMENT, 2003, 85 (04) :489-506
[9]   DAILY STREAMFLOW FORECASTING BY ARTIFICIAL NEURAL NETWORK IN A LARGE-SCALE BASIN [J].
Xu, Jingwen ;
Zhu, Xuemei ;
Zhang, Wanchang ;
Xu, Xiaoxun ;
Xian, Junren .
2009 IEEE YOUTH CONFERENCE ON INFORMATION, COMPUTING AND TELECOMMUNICATION, PROCEEDINGS, 2009, :487-+