Finite Element Modeling of Piezoelectric Energy Harvesters

被引:1
作者
Wu, P. H. [1 ]
Shu, Y. C. [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014 | 2014年 / 9057卷
关键词
Equivalent Load Impedance; Finite Element; Interface Circuits; Piezoelectric Energy Harvesting; POWER OUTPUT; CIRCUIT; DEVICES; OPTIMIZATION; PERFORMANCE; GENERATOR; DESIGN;
D O I
10.1117/12.2044347
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This article reports a novel finite element model of piezoelectric energy harvesters accounting for the effect of nonlinear interface circuits. The idea is to replace the energy harvesting circuit in parallel with the parasitic piezoelectric capacitance by an equivalent load impedance. This approach offers many advantages. First, the model itself can be implemented conveniently in commercial finite element softwares. Second, it directly provides system-level designs on the whole without resorting to circuit solvers. Third, the extensions to complicated structures such as array configurations are straightforward. The proposed finite element model is validated by considering the case of an array system endowed with the standard, parallel-/series-SSHI (synchronized switch harvesting on inductor) interfaces. Good agreement is found between simulation results and analytic estimates.
引用
收藏
页数:8
相关论文
共 43 条
[21]  
Lien IC., 2012, THESIS NATL TAIWAN U
[22]   Analysis of an array of piezoelectric energy harvesters connected in series [J].
Lin, H. C. ;
Wu, P. H. ;
Lien, I. C. ;
Shu, Y. C. .
SMART MATERIALS AND STRUCTURES, 2013, 22 (09)
[23]   Piezoelectric micro energy harvesters based on stainless-steel substrates [J].
Lin, Shun-Chiu ;
Wu, Wen-Jong .
SMART MATERIALS AND STRUCTURES, 2013, 22 (04)
[24]   Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system [J].
Mo, Changki ;
Radziemski, Leon J. ;
Clark, William W. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (02)
[25]   Adaptive piezoelectric energy harvesting circuit for wireless remote power supply [J].
Ottman, GK ;
Hofmann, HF ;
Bhatt, AC ;
Lesieutre, GA .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2002, 17 (05) :669-676
[26]   Improving the performance of a piezoelectric energy harvester using a variable thickness beam [J].
Paquin, Simon ;
St-Amant, Yves .
SMART MATERIALS AND STRUCTURES, 2010, 19 (10)
[27]   Piezoelectric windmill: A novel solution to remote sensing [J].
Priya, S ;
Chen, CT ;
Fye, D ;
Zahnd, J .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2005, 44 (1-7) :L104-L107
[28]  
Qin Y, 2008, NATURE, V451, P809, DOI [10.1038/nature06601, 10.1038/nature066O1]
[29]   On the optimal energy harvesting from a vibration source [J].
Renno, Jamil M. ;
Daqaq, Mohammed F. ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2009, 320 (1-2) :386-405
[30]   A piezoelectric vibration based generator for wireless electronics [J].
Roundy, S ;
Wright, PK .
SMART MATERIALS & STRUCTURES, 2004, 13 (05) :1131-1142