Finite Element Modeling of Piezoelectric Energy Harvesters

被引:1
作者
Wu, P. H. [1 ]
Shu, Y. C. [1 ]
机构
[1] Natl Taiwan Univ, Inst Appl Mech, Taipei 106, Taiwan
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014 | 2014年 / 9057卷
关键词
Equivalent Load Impedance; Finite Element; Interface Circuits; Piezoelectric Energy Harvesting; POWER OUTPUT; CIRCUIT; DEVICES; OPTIMIZATION; PERFORMANCE; GENERATOR; DESIGN;
D O I
10.1117/12.2044347
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This article reports a novel finite element model of piezoelectric energy harvesters accounting for the effect of nonlinear interface circuits. The idea is to replace the energy harvesting circuit in parallel with the parasitic piezoelectric capacitance by an equivalent load impedance. This approach offers many advantages. First, the model itself can be implemented conveniently in commercial finite element softwares. Second, it directly provides system-level designs on the whole without resorting to circuit solvers. Third, the extensions to complicated structures such as array configurations are straightforward. The proposed finite element model is validated by considering the case of an array system endowed with the standard, parallel-/series-SSHI (synchronized switch harvesting on inductor) interfaces. Good agreement is found between simulation results and analytic estimates.
引用
收藏
页数:8
相关论文
共 43 条
[1]  
[Anonymous], 2011, PIEZOELECTRIC ENERGY, DOI DOI 10.1002/9781119991151.APP1
[2]   Single crystals and nonlinear process for outstanding vibration-powered electrical generators [J].
Laboratoire de Génie Electrique et Ferroélectricité, INSA de Lyon, 69621 Villeurbanne, France ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
IEEE Trans Ultrason Ferroelectr Freq Control, 2006, 4 (673-683) :673-683
[3]   Nonlinear Energy Harvesting [J].
Cottone, F. ;
Vocca, H. ;
Gammaitoni, L. .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[4]   An electromechanical finite element model for piezoelectric energy harvester plates [J].
De Marqui Junior, Carlos ;
Erturk, Alper ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2009, 327 (1-2) :9-25
[5]   Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J].
duToit, NE ;
Wardle, BL ;
Kim, SG .
INTEGRATED FERROELECTRICS, 2005, 71 :121-160
[6]   A Coupled Finite Element-Circuit Simulation Model for Analyzing Piezoelectric Energy Generators [J].
Elvin, Niell G. ;
Elvin, Alex A. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2009, 20 (05) :587-595
[7]   Issues in mathematical modeling of piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (06)
[8]   Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems [J].
Ferrari, Marco ;
Ferrari, Vittorio ;
Guizzetti, Michele ;
Marioli, Daniele ;
Taroni, Andrea .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 142 (01) :329-335
[9]   Characteristics of energy storage devices in piezoelectric energy harvesting systems [J].
Guan, M. J. ;
Liao, W. H. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2008, 19 (06) :671-680
[10]   Toward energy harvesting using active materials and conversion improvement by nonlinear processing [J].
Guyomar, D ;
Badel, A ;
Lefeuvre, E ;
Richard, C .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2005, 52 (04) :584-595