Counterexamples to the uniform shortest path routing conjecture for vertex-transitive graphs

被引:4
作者
Shim, SH
Sirán, J [1 ]
Zerovnik, J
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
[2] Slovak Tech Univ Bratislava, Dept Math, Bratislava 81368, Slovakia
[3] Univ Maribor, FME, SLO-2000 Maribor, Slovenia
[4] IMFM, DTCS, Ljubljana, Slovenia
关键词
routing; shortest path; vertex-transitive graph;
D O I
10.1016/S0166-218X(01)00310-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we disprove the uniform shortest path routing conjecture for vertex-transitive graphs by constructing an infinite family of counterexamples. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 10 条
[1]  
[Anonymous], PRODUCT GRAPHS STRUC
[2]   FORWARDING INDEX OF COMMUNICATION NETWORKS. [J].
Chung, Fan R.K. ;
Coffman Jr., Edward G. ;
Reiman, Martin I. ;
Simon, Burton .
IEEE Transactions on Information Theory, 1987, IT-33 (02) :224-232
[3]   GROUPS OF GENERALIZED PETERSEN GRAPHS [J].
FRUCHT, R ;
GRAVER, JE ;
WATKINS, ME .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP) :211-&
[4]   On quasi-Cayley graphs [J].
Gauyacq, G .
DISCRETE APPLIED MATHEMATICS, 1997, 77 (01) :43-58
[5]   FORWARDING INDEXES OF CONSISTENT ROUTINGS AND THEIR COMPLEXITY [J].
HEYDEMANN, MC ;
MEYER, JC ;
SOTTEAU, D ;
OPATRNY, J .
NETWORKS, 1994, 24 (02) :75-82
[6]   ON FORWARDING INDEXES OF NETWORKS [J].
HEYDEMANN, MC ;
MEYER, JC ;
SOTTEAU, D .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (02) :103-123
[7]  
Heydemann MC, 1997, NATO ADV SCI I C-MAT, V497, P167
[8]  
McKay BD, 1996, J GRAPH THEOR, V22, P321, DOI 10.1002/(SICI)1097-0118(199608)22:4<321::AID-JGT6>3.3.CO
[9]  
2-9
[10]   VERTEX-TRANSITIVE GRAPHS WHICH ARE NOT CAYLEY-GRAPHS .1. [J].
MCKAY, BD ;
PRAEGER, CE .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 :53-63