Modeling and Control of a Sugars Precipitation Process for Chinese Medicine Mixed Solution

被引:0
|
作者
Duan, Hongjun [1 ]
Li, Qingwei [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Sch Control Engn, Qinhuangdao, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao, Peoples R China
来源
2013 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC) | 2013年
关键词
batch processes; nonlinearity; multivariable control; Chinese medicine; precipitation; NEURAL-NETWORK MODEL; PREDICTIVE CONTROL; OPTIMIZATION; KINETICS; GLUCOSE; SUCROSE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper illustrates the benefits of a multivariable control approach applied to a sugar precipitation process for Chinese medicine mixed solution. This relevant approach proposes setpoints tracking for the crystal mass/concentration couple. In this purpose, a model dedicated to the stage precipitation is designed, without consideration of crystal size distribution. The performance of the proposed control strategy, which application to sucrose and glucose precipitation constitutes a real novelty, is tested via simulation. The good performance in setpoints tracking allows to consider a significant improvement of the precipitation productivity.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [41] Evaluation of the conjoint efficacy in Chinese medicine with the longitudinal latent variable linear mixed model
    Yi Dan-hui
    Li Yang
    Shao Shu-xin
    Xie Yan-ming
    Yuwen Ya
    CHINESE JOURNAL OF INTEGRATIVE MEDICINE, 2013, 19 (08) : 629 - 635
  • [42] Accelerating Biologics Manufacturing by Modeling: Process Integration of Precipitation in mAb Downstream Processing
    Lohmann, Lara Julia
    Strube, Jochen
    PROCESSES, 2020, 8 (01)
  • [43] Evaluation of the Conjoint Efficacy in Chinese Medicine with the Longitudinal Latent Variable Linear Mixed Model
    易丹辉
    李扬
    邵淑新
    谢雁鸣
    宇文亚
    Chinese Journal of Integrative Medicine, 2013, (08) : 629 - 635
  • [44] Magnesium chloride precipitation from mixed salt solution using 1,4-dioxan
    Fezei, R.
    Hammi, H.
    M'nif, A.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (3A) : 367 - 372
  • [45] Developing clinical practice guidelines for the integration of Chinese medicine and biomedicine: A new process
    Shi, Nannan
    Zhong, Linda L. D.
    Zhang, Chi
    Han, Xuejie
    Wang, Yuexi
    Liu, Yuqi
    Wang, Liying
    Liu, Mengyu
    Lu, Aiping
    EUROPEAN JOURNAL OF INTEGRATIVE MEDICINE, 2016, 8 (06) : 916 - 920
  • [46] A clean metallurgical process for vanadium precipitation from chromium-containing vanadate solution
    Hu, Bin
    Zhang, Changda
    Yang, Minge
    Liu, Qiuxiang
    Wang, Mingyu
    Wang, Xuewen
    HYDROMETALLURGY, 2021, 205
  • [47] Selective preparation of neodymium phosphates from iron mixed solution by two-step precipitation
    Onoda, Hiroaki
    Iinuma, Atsuya
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2020, 8 (05):
  • [48] Modeling of control loop in production sheduling and inventory level control process
    Gjeldum, Nikola
    Tufekcic, Dzemo
    Veza, Ivica
    ANNALS OF DAAAM FOR 2007 & PROCEEDINGS OF THE 18TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON CREATIVITY, RESPONSIBILITY, AND ETHICS OF ENGINEERS, 2007, : 297 - 298
  • [49] Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures
    Mu, Yang
    Wang, Gang
    Yu, Han-Qing
    BIORESOURCE TECHNOLOGY, 2006, 97 (11) : 1302 - 1307
  • [50] Machine Learning for Modeling and Control of Industrial Clarifier Process
    Rajalakshmi, M.
    Saravanan, V
    Arunprasad, V
    Romero, C. A. T.
    Khalaf, O., I
    Karthik, C.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (01) : 339 - 359