Three-descent and the Birch and Swinnerton-Dyer conjecture

被引:7
作者
Bandini, A [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
D O I
10.1216/rmjm/1181069889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a three-descent procedure to bound and, in some cases, compute the three-part of the Selmer and Tate-Shafarevich group of the curves y(2) = x(3) + a, a a nonzero integer. This enables us to verify the whole Birch and Swinnerton-Dyer conjecture for some of such curves.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 17 条
[1]  
BIRCH BJ, 1965, J REINE ANGEW MATH, V218, P79
[2]  
Cassels JWS, 1998, J REINE ANGEW MATH, V494, P101
[3]   CONJECTURE OF BIRCH AND SWINNERTON-DYER [J].
COATES, J ;
WILES, A .
INVENTIONES MATHEMATICAE, 1977, 39 (03) :223-251
[4]  
COATES J, 1978, J AUSTR MATH SOC A, V26, P1
[5]  
Gross B., 1982, Progress Mathematics, V26, P219
[6]  
Merriman JR, 1996, ACTA ARITH, V77, P385
[7]   TATE-SHAFAREVICH GROUPS AND L-FUNCTIONS OF ELLIPTIC-CURVES WITH COMPLEX MULTIPLICATION [J].
RUBIN, K .
INVENTIONES MATHEMATICAE, 1987, 89 (03) :527-559
[8]   THE MAIN CONJECTURES OF IWASAWA THEORY FOR IMAGINARY QUADRATIC FIELDS [J].
RUBIN, K .
INVENTIONES MATHEMATICAE, 1991, 103 (01) :25-68
[9]  
Rubin K, 1999, LECT NOTES MATH, V1716, P167
[10]   SELMER GROUPS AND CUBIC BODIES [J].
SATGE, P .
JOURNAL OF NUMBER THEORY, 1986, 23 (03) :294-317