An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO

被引:54
作者
Miltenberger, A. K. [1 ]
Pfahl, S. [1 ]
Wernli, H. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
关键词
PARTICLE DISPERSION MODEL; LARGE-EDDY SIMULATION; TEMPORAL RESOLUTION; LAGRANGIAN MODEL; LEE CYCLOGENESIS; CIRRUS CLOUDS; TRANSPORT; ACCURACY; VARIABILITY; SENSITIVITY;
D O I
10.5194/gmd-6-1989-2013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A module to calculate online trajectories has been implemented into the nonhydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated resolved wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO-model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO-model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are found to be fairly small for the high-resolution simulations described in this paper. The computational costs may, however, vary strongly depending on the number of trajectories and trace variables. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO-model module, an Alpine north foehn event in summer 1987 has been simulated with horizontal resolutions of 2.2, 7 and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50-190 km and 150-750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.
引用
收藏
页码:1989 / 2004
页数:16
相关论文
共 85 条
[1]   Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities [J].
Baldauf, Michael ;
Seifert, Axel ;
Foerstner, Jochen ;
Majewski, Detlev ;
Raschendorfer, Matthias ;
Reinhardt, Thorsten .
MONTHLY WEATHER REVIEW, 2011, 139 (12) :3887-3905
[2]   Continuous four-dimensional source attribution for the Berlin area during two days in July 1994. Part I: the new Euler-Lagrange-model system LaMM5 [J].
Becker, A ;
Keuler, K .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (32) :5497-5508
[3]   APOLLO2, a new long range Lagrangian particle dispersion model and its evaluation against the first ETEX tracer release [J].
Bellasio, R. ;
Scarpato, S. ;
Bianconi, R. ;
Zeppa, P. .
ATMOSPHERIC ENVIRONMENT, 2012, 57 :244-256
[4]   Back-tracking water vapour contributing to a precipitation event over Trentino:: a case study [J].
Bertò, A ;
Buzzi, A ;
Zardi, D .
METEOROLOGISCHE ZEITSCHRIFT, 2004, 13 (03) :189-200
[5]   Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling [J].
Brabec, M. ;
Wienhold, F. G. ;
Luo, B. P. ;
Voemel, H. ;
Immler, F. ;
Steiner, P. ;
Hausammann, E. ;
Weers, U. ;
Peter, T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (19) :9135-9148
[6]   Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain [J].
Brioude, J. ;
Angevine, W. M. ;
McKeen, S. A. ;
Hsie, E. -Y. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (05) :1127-1136
[7]   ANALYSIS AND NUMERICAL MODELING OF A FRONTAL PASSAGE ASSOCIATED WITH THUNDERSTORM DEVELOPMENT OVER THE PO VALLEY AND THE ADRIATIC SEA [J].
BUZZI, A ;
ALBERONI, PP .
METEOROLOGY AND ATMOSPHERIC PHYSICS, 1992, 48 (1-4) :205-224
[8]   CYCLOGENESIS IN LEE OF ALPS - CASE-STUDY [J].
BUZZI, A ;
TIBALDI, S .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1978, 104 (440) :271-287
[9]  
Buzzi A., 1984, Contributions to Atmospheric Physics, V57, P380
[10]   Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere [J].
Cirisan, A. ;
Spichtinger, P. ;
Luo, B. P. ;
Weisenstein, D. K. ;
Wernli, H. ;
Lohmann, U. ;
Peter, T. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (10) :4533-4548