Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy

被引:344
作者
Chang, Mengyu [1 ,2 ]
Hou, Zhiyao [1 ,3 ,4 ]
Wang, Man [5 ]
Li, Chunxia [5 ]
Lin, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
[3] Guangzhou Med Univ, Guangzhou Municipal & Guangdong Prov Key Lab Prot, Sch Basic Med Sci, Guangzhou 511436, Guangdong, Peoples R China
[4] Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Dept Abdominal Surg, Guangzhou 510095, Peoples R China
[5] Shandong Univ, Inst Mol Sci & Engn, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperthermia therapy; immunotherapy; nanomaterials; synergistic therapy; IMMUNE CHECKPOINT BLOCKADE; IMMUNOGENIC CELL-DEATH; RECEPTOR T-CELLS; IRON-OXIDE NANOPARTICLES; DENDRITIC CELLS; CANCER-THERAPY; MAGNETIC HYPERTHERMIA; PROTEIN DENATURATION; TUMOR-ANTIGENS; UP-CONVERSION;
D O I
10.1002/adma.202004788
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
引用
收藏
页数:29
相关论文
共 433 条
[1]   Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses [J].
Abbaraju, Prasanna Lakshmi ;
Jambhrunkar, Manasi ;
Yang, Yannan ;
Liu, Yang ;
Lu, Yao ;
Yu, Chengzhong .
CHEMICAL COMMUNICATIONS, 2018, 54 (16) :2020-2023
[2]   Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer [J].
Abdalla, Ahmed M. E. ;
Xiao, Lin ;
Miao, Yu ;
Huang, Lixia ;
Fadlallah, Gendeal M. ;
Gauthier, Mario ;
Ouyang, Chenxi ;
Yang, Guang .
ADVANCED SCIENCE, 2020, 7 (10)
[3]   NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy [J].
Abudu, Yakubu Princely ;
Pankiv, Serhiy ;
Mathai, Benan John ;
Lystad, Aif Hakon ;
Bindesboll, Christian ;
Brenne, Hanne Britt ;
Ng, Matthew Yoke Wui ;
Thiede, Bernd ;
Yamamoto, Ai ;
Nthiga, Thaddaeus Mutugi ;
Lamark, Trond ;
Esguerra, Camila, V ;
Johansen, Terje ;
Simonsen, Anne .
DEVELOPMENTAL CELL, 2019, 49 (04) :509-+
[4]   CANCER IMMUNOTHERAPY Filmed over with CAR-T cells [J].
Adu-Berchie, Kwasi ;
Mooney, David J. .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (02) :142-143
[5]   Activation of the PD-1 Pathway Contributes to Immune Escape in EGFR-Driven Lung Tumors [J].
Akbay, Esra A. ;
Koyama, Shohei ;
Carretero, Julian ;
Altabef, Abigail ;
Tchaicha, Jeremy H. ;
Christensen, Camilla L. ;
Mikse, Oliver R. ;
Cherniack, Andrew D. ;
Beauchamp, Ellen M. ;
Pugh, Trevor J. ;
Wilkerson, Matthew D. ;
Fecci, Peter E. ;
Butaney, Mohit ;
Reibel, Jacob B. ;
Soucheray, Margaret ;
Cohoon, Travis J. ;
Janne, Pasi A. ;
Meyerson, Matthew ;
Hayes, D. Neil ;
Shapiro, Geoffrey I. ;
Shimamura, Takeshi ;
Sholl, Lynette M. ;
Rodig, Scott J. ;
Freeman, Gordon J. ;
Hammerman, Peter S. ;
Dranoff, Glenn ;
Wong, Kwok-Kin .
CANCER DISCOVERY, 2013, 3 (12) :1355-1363
[6]   Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity [J].
Alloatti, Andres ;
Rookhuizen, Derek C. ;
Joannas, Leonel ;
Carpier, Jean-Marie ;
Iborra, Salvador ;
Magalhaes, Joao G. ;
Yatim, Nader ;
Kozik, Patrycja ;
Sancho, David ;
Albert, Matthew L. ;
Amigorena, Sebastian .
JOURNAL OF EXPERIMENTAL MEDICINE, 2017, 214 (08) :2231-2241
[7]   cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders [J].
Andreeva, Liudmila ;
Hiller, Bjoern ;
Kostrewa, Dirk ;
Laessig, Charlotte ;
Mann, Carina C. de Oliveira ;
Drexler, David Jan ;
Maiser, Andreas ;
Gaidt, Moritz ;
Leonhardt, Heinrich ;
Hornung, Veit ;
Hopfner, Karl-Peter .
NATURE, 2017, 549 (7672) :394-+
[8]   Immune checkpoint blockade in hematologic malignancies [J].
Armand, Philippe .
BLOOD, 2015, 125 (22) :3393-3400
[9]   CD169-Positive Macrophages Dominate Antitumor Immunity by Crosspresenting Dead Cell-Associated Antigens [J].
Asano, Kenichi ;
Nabeyama, Ami ;
Miyake, Yasunobu ;
Qiu, Chun-Hong ;
Kurita, Ai ;
Tomura, Michio ;
Kanagawa, Osami ;
Fujii, Shin-ichiro ;
Tanaka, Masato .
IMMUNITY, 2011, 34 (01) :85-95
[10]   IRAP+ endosomes restrict TLR9 activation and signaling [J].
Babdor, Joel ;
Descamps, Delphyne ;
Adiko, Aime Cezaire ;
Tohme, Mira ;
Maschalidi, Sophia ;
Evnouchidou, Irini ;
Vasconcellos, Luiz Ricardo ;
De Luca, Mariacristina ;
Mauvais, Francois-Xavier ;
Garfa-Traore, Meriem ;
Brinkmann, Melanie M. ;
Chignard, Michel ;
Manoury, Benedicte ;
Saveanu, Loredana .
NATURE IMMUNOLOGY, 2017, 18 (05) :509-518