Search-Based Transformation Synthesis for 3-Valued Reversible Circuits

被引:5
作者
Miller, D. Michael
Dueck, Gerhard W.
机构
来源
REVERSIBLE COMPUTATION (RC 2020) | 2020年 / 12227卷
关键词
D O I
10.1007/978-3-030-52482-1_13
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A novel bounded search transformation-based synthesis approach is presented that finds a reversible circuit implementation for a given reversible function. Methods for simplifying the circuit post-synthesis are presented. Quantum implementation constraints are also considered. Experimental results for all 2-input 3-valued functions show the effectiveness of the new approaches compared to earlier transformation-based synthesis approaches. Other examples are given to show both the effectiveness and limitations of the new approach which point to a number of key areas for further research.
引用
收藏
页码:218 / 236
页数:19
相关论文
共 10 条
[1]  
Barbieri C., 2018, 13 INT WORKSHOP BOOL
[2]   Exact Synthesis of Ternary Reversible Functions using Ternary Toffoli Gates [J].
Kole, Abhoy ;
Rani, P. Mercy Nesa ;
Datta, Kamalika ;
Sengupta, Indranil ;
Drechsler, Rolf .
2017 IEEE 47TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2017), 2017, :179-184
[3]  
Miller DM, 2006, J MULT-VALUED LOG S, V12, P431
[4]  
Miller DM, 2004, INT SYM MVL, P74
[5]  
Miller DM, 2003, DES AUT CON, P318
[6]   Multivalued logic gates for quantum computation [J].
Muthukrishnan, A ;
Stroud, CR .
PHYSICAL REVIEW A, 2000, 62 (05) :052309-052301
[7]  
Nielsen M, 2000, Quantum Computation and Quantum Information
[8]  
Resch S, 2019, Arxiv, DOI [arXiv:1905.07240, DOI 10.48550/ARXIV.1905.07240]
[9]  
Soeken M, 2016, IEEE INT SYMP CIRC S, P2290, DOI 10.1109/ISCAS.2016.7539041
[10]   Realizations of quantum computing using optical manipulations of atoms [J].
Päivi Töormä .
Natural Computing, 2002, 1 (2-3) :199-209