The exceptional Lie algebra E7(-25): multiplets and invariant differential operators

被引:10
作者
Dobrev, V. K. [1 ,2 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
[2] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
关键词
UNITARY IRREDUCIBLE REPRESENTATIONS; EXTENDED CONFORMAL SUPERSYMMETRY; GROUP-THEORETICAL APPROACH; INTERTWINING-OPERATORS; ELEMENTARY REPRESENTATIONS; CLASSIFICATION; DUALITY; REALIZATIONS; CHARACTERS;
D O I
10.1088/1751-8113/42/28/285203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, we continue the project of systematic construction of invariant differential operators on the example of the non-compact exceptional algebra E7(-25). Our choice of this particular algebra is motivated by the fact that it belongs to a narrow class of algebras, which we call 'conformal Lie algebras', which have very similar properties to the conformal algebras of n-dimensional Minkowski spacetime. This class of algebras is identified and summarized in a table. Another motivation is related to the AdS/CFT correspondence. We give the multiplets of indecomposable elementary representations, including the necessary data for all relevant invariant differential operators.
引用
收藏
页数:16
相关论文
共 70 条
  • [1] [Anonymous], 1978, Conformal Invariance in Quantum Field Theory
  • [2] Mapping the geometry of the E6 group
    Bernardoni, Fabio
    Cacciatori, Sergio L.
    Cerchiai, Bianca L.
    Scotti, Antonio
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (01)
  • [3] Bernstein IN., 1971, Funct. Anal. Appl., V5, P1, DOI 10.1007/BF01075841
  • [4] BOURRELLY P, 1968, Protistologica, V4, P5
  • [5] Dixmier J., 1977, Enveloping Algebras
  • [6] Invariant differential operators for non-compact Lie groups: Parabolic subalgebras
    Dobrev, V. K.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (04) : 407 - 449
  • [7] Characters of the positive energy UIRs of D=4 conformal supersymmetry
    Dobrev, V. K.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2007, 38 (05) : 564 - 609
  • [8] Dobrev V. K., 1978, Reports on Mathematical Physics, V13, P233, DOI 10.1016/0034-4877(78)90054-X
  • [9] Positive energy representations, holomorphic discrete series and finite-dimensional irreps
    Dobrev, V. K.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (42)
  • [10] Dobrev V.K., 1977, Lect. Notes. Phys., V63