Power quality disturbance classification under noisy conditions using adaptive wavelet threshold and DBN-ELM hybrid model

被引:36
作者
Gao, Yunpeng [1 ]
Li, Yunfeng [1 ]
Zhu, Yanqing [1 ]
Wu, Cong [1 ]
Gu, Dexi [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Power quality disturbance(PQD); Deep belief network(DBN); Extreme learning machine(ELM); Adaptive wavelet threshold; Restricted boltzmann machine(RBM); TRANSFORM; EXTRACTION; NETWORK;
D O I
10.1016/j.epsr.2021.107682
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To solve the problems of noise interference and artificial feature extraction in power quality disturbance (PQD) classification, a new method combining adaptive wavelet threshold denoising and deep belief network fusion extreme learning machine (DBN-ELM) is proposed. Firstly, the noise content of the layer is determined by calculating the energy ratio of the wavelet coefficients of each layer, and an adaptive wavelet threshold is constructed based on the energy ratio to denoise the PQD signals. Secondly, the feature extraction capability of DBN is used to extract the feature from the PQD signals after denoising. Finally, a novel PQD classifier called DBN-ELM is constructed by integrating an ELM into a DBN, which avoids global fine-tuning of DBN and improves PQD classification efficiency. The simulation result and experimental verification show that the proposed method can effectively suppress PQD noise and performs well on DBN-ELM classification.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Variational Mode Decomposition and Decision Tree Based Detection and Classification of Power Quality Disturbances in Grid-Connected Distributed Generation System [J].
Achlerkar, Pankaj D. ;
Samantaray, S. R. ;
Manikandan, M. Sabarimalai .
IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (04) :3122-3132
[2]   Power system harmonic and interharmonic estimation using Vortex Search Algorithm [J].
Altintasi, Cagri ;
Aydin, Omer ;
Taplamacioglu, M. Cengiz ;
Salor, Ozgul .
ELECTRIC POWER SYSTEMS RESEARCH, 2020, 182
[3]  
[Anonymous], 2019, IEEE Standard 1159-2019, P1, DOI [DOI 10.1109/IEEESTD.2009.5154067, 10.1109/IEEESTD.2019.8796486, DOI 10.1109/IEEESTD.2019.8796486]
[4]   A Fast Gridless algorithm for harmonics and interharmonics estimation [J].
Barros, Andrea Macario ;
Guarneri, Giovanni Alfredo ;
Lazzaretti, Andre Eugenio .
ELECTRIC POWER SYSTEMS RESEARCH, 2021, 196
[5]   Harmonic and Interharmonic Phasor Estimation Using Matrix Pencil Method for Phasor Measurement Units [J].
Bernard, Lakshan ;
Goondram, Sunny ;
Bahrani, Behrooz ;
Pantelous, Athanasios A. ;
Razzaghi, Reza .
IEEE SENSORS JOURNAL, 2021, 21 (02) :945-954
[6]   Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier [J].
Biswal, Milan ;
Dash, P. K. .
DIGITAL SIGNAL PROCESSING, 2013, 23 (04) :1071-1083
[7]   Feature Extraction and Power Quality Disturbances Classification Using Smart Meters Signals [J].
Borges, Fabbio A. S. ;
Fernandes, Ricardo A. S. ;
Silva, Ivan N. ;
Silva, Cintia B. S. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) :824-833
[8]   Novel Downsampling Empirical Mode Decomposition Approach for Power Quality Analysis [J].
Camarena-Martinez, David ;
Valtierra-Rodriguez, Martin ;
Andres Perez-Ramirez, Carlos ;
Pablo Amezquita-Sanchez, Juan ;
de Jesus Romero-Troncoso, Rene ;
Garcia-Perez, Arturo .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) :2369-2378
[9]   Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current [J].
Chai, Na ;
Yang, Ming ;
Ni, Qinan ;
Xu, Dianguo .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (04) :3782-3792
[10]   Harmonic Phasor Estimator for P-Class Phasor Measurement Units [J].
Chen, Lei ;
Zhao, Wei ;
Wang, Fuping ;
Huang, Songling .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (04) :1556-1565