Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints

被引:37
作者
Briancon, Tanguy [2 ]
Lamboley, Jimmy [1 ]
机构
[1] UEB, ENS Cachan Bretagne, IRMAR, F-35170 Bruz, France
[2] Lycee Agora, F-92800 Puteaux La Defense, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 04期
关键词
Shape optimization; Eigenvalues of the Laplace operator; Regularity of free boundaries; EXISTENCE;
D O I
10.1016/j.anihpc.2008.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the well-known following shape optimization problem: lambda(1)(Omega*) = min lambda(1) (Omega), |Omega|=u Omega subset of D where lambda(1) denotes the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary condition, and D is an open bounded set (a box). It is well-known that the solution of this problem is the ball of volume a if such a ball exists in the box D (Faber-Krahn's theorem). In this paper, we prove regularity properties of the boundary of the optimal shapes Omega* in any case and in any dimension. Full regularity is obtained in dimension 2. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1149 / 1163
页数:15
相关论文
共 15 条
[1]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[2]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[3]   Lipschitz continuity of state functions in some optimal shaping [J].
Briançon, T ;
Hayouni, M ;
Pierre, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (01) :13-32
[4]   Regularity of optimal shapes for the Dirichlet's energy with volume constraint [J].
Briancon, T .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (01) :99-122
[5]   AN EXISTENCE RESULT FOR A CLASS OF SHAPE OPTIMIZATION PROBLEMS [J].
BUTTAZZO, G ;
DALMASO, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 122 (02) :183-195
[6]  
Caffarelli LA, 2004, CONTEMP MATH, V353, P43
[7]  
CROUZEIX M, 1991, EUR J MECH B-FLUID, V10, P527
[8]  
DESILVA D, J REINE ANG IN PRESS
[9]  
Gariepy RF., 1992, MEASURE THEORY FINE
[10]  
Giusti E., 1984, MINIMAL SURFACES FUN