Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads

被引:7
|
作者
Sharma, Mradul [1 ]
Nayak, Jitadeepa [2 ]
Koul, Maharaj Krishna [1 ]
Bose, Smarajit [2 ]
Mitra, Abhas [1 ]
机构
[1] Bhabha Atom Res Ctr, Astrophys Sci Div, Bombay 400085, Maharashtra, India
[2] Indian Stat Inst, Bayesian & Interdisciplinary Res Unit, Kolkata, India
关键词
methods: statistical; telescopes; GAMMA-RAYS; MULTIVARIATE-ANALYSIS; CRAB-NEBULA; TEV;
D O I
10.1088/1674-4527/14/11/012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A detailed case study of gamma-hadron segregation for a ground based atmospheric Cherenkov telescope is presented. We have evaluated and compared various supervised machine learning methods such as the Random Forest method, Artificial Neural Network, Linear Discriminant method, Naive Bayes Classifiers, Support Vector Machines as well as the conventional dynamic supercut method by simulating triggering events with the Monte Carlo method and applied the results to a Cherenkov telescope. It is demonstrated that the Random Forest method is the most sensitive machine learning method for gamma-hadron segregation.
引用
收藏
页码:1491 / 1503
页数:13
相关论文
共 50 条
  • [1] Gamma/hadron segregation for a ground based imaging atmospheric Cherenkov telescope using machine learning methods: Random Forest leads
    Mradul Sharma
    Jitadeepa Nayak
    Maharaj Krishna Koul
    Smarajit Bose
    Abhas Mitra
    Research in Astronomy and Astrophysics, 2014, 14 (11) : 1491 - 1503
  • [2] Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC
    Albert, J.
    Aliu, E.
    Anderhub, H.
    Antoranz, P.
    Armada, A.
    Asensio, M.
    Baixeras, C.
    Barrio, J. A.
    Bartko, H.
    Bastieri, D.
    Becker, J.
    Bednarek, W.
    Berger, K.
    Bigongiari, C.
    Biland, A.
    Bock, R. K.
    Bordas, P.
    Bosch-Ramon, V.
    Bretz, T.
    Britvitch, I.
    Camara, M.
    Carmona, E.
    Chilingarian, A.
    Ciprini, S.
    Coarasa, J. A.
    Commichau, S.
    Contreras, J. L.
    Cortina, J.
    Costado, M. T.
    Curtef, V.
    Danielyan, V.
    Dazzi, F.
    De Angelis, A.
    Delgado, C.
    de los Reyes, R.
    De Lotto, B.
    Domingo-Santamaria, E.
    Dorner, D.
    Doro, M.
    Errando, M.
    Fagiolini, M.
    Ferenc, D.
    Fernandez, E.
    Firpo, R.
    Flix, J.
    Fonseca, M. V.
    Font, L.
    Fuchs, M.
    Galante, N.
    Garcia-Lopez, R. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 588 (03): : 424 - 432
  • [3] Gamma-hadron separation methods for the VERITAS array of four imaging atmospheric Cherenkov telescopes
    Krawczynski, H.
    Carter-Lewis, D. A.
    Duke, C.
    Holder, J.
    Maier, G.
    Le Bohec, S.
    Sembroski, G.
    ASTROPARTICLE PHYSICS, 2006, 25 (06) : 380 - 390
  • [4] Gamma/Hadron Separation in Imaging Air Cherenkov Telescopes Using Deep Learning Libraries TensorFlow and PyTorch
    Postnikov, E. B.
    Kryukov, A. P.
    Polyakov, S. P.
    Shipilov, D. A.
    Zhurov, D. P.
    26TH EXTENDED EUROPEAN COSMIC RAY SYMPOSIUM, 2019, 1181
  • [5] A new analysis method for reconstructing the arrival direction of TeV gamma rays using a single imaging atmospheric Cherenkov telescope
    Lessard, RW
    Buckley, JH
    Connaughton, V
    Le Bohec, S
    ASTROPARTICLE PHYSICS, 2001, 15 (01) : 1 - 18
  • [6] Ground visibility prediction using tree-based and random-forest machine learning algorithm: Comparative study based on atmospheric pollution and atmospheric boundary layer data
    Wang, Fuzeng
    Liu, Ruolan
    Yan, Hao
    Liu, Duanyang
    Han, Lin
    Yuan, Shujie
    ATMOSPHERIC POLLUTION RESEARCH, 2024, 15 (11)
  • [7] The History of Ground-Based Very High Energy Gamma-Ray Astrophysics with the Atmospheric Air Cherenkov Telescope Technique
    Mirzoyan, Razmik
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2013, 239 : 26 - 34
  • [8] The potential of the ground based arrays of imaging atmospheric Cherenkov telescopes .2. Gamma ray flux sensitivities
    Aharonian, FA
    Hofmann, W
    Konopelko, AK
    Volk, HJ
    ASTROPARTICLE PHYSICS, 1997, 6 (3-4) : 369 - 377
  • [9] Muon identification in a compact single-layered water Cherenkov detector and gamma/hadron discrimination using machine learning techniques
    R. Conceição
    B. S. González
    A. Guillén
    M. Pimenta
    B. Tomé
    The European Physical Journal C, 2021, 81
  • [10] Muon identification in a compact single-layered water Cherenkov detector and gamma/hadron discrimination using machine learning techniques
    Conceicao, R.
    Gonzalez, B. S.
    Guillen, A.
    Pimenta, M.
    Tome, B.
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (06):