Computing the permanental polynomials of graphs

被引:11
作者
Liu, Xiaogang [1 ]
Wu, Tingzeng [2 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Qinghai National Univ, Sch Math & Stat, Xining 810007, Qinghai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Permanent; Laplacian matrix; Signless Laplacian matrix; Laplacian permanental polynomial; Signless Laplacian permanental polynomial; PER-SPECTRAL CHARACTERIZATIONS; LAPLACIAN MATRIX; SIGNLESS LAPLACIAN; BIPARTITE GRAPHS; TREES; FULLERENES; BOUNDS;
D O I
10.1016/j.amc.2017.01.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an n x n matrix with entries m(ij)(i, j = 1,2,..., n). The permanent of M is defined to be per(M) = Sigma(sigma)Pi(n)(i=1) m(i sigma(i)). where the sum is taken over all permutations sigma of {1, 2,..., n}. The permanental polynomial of M is defined by per(xl(n)- M), where I-n is the identity matrix of size n. In this paper, we give recursive formulas for computing permanental polynomials of the Laplacian matrix and the signless Laplacian matrix of a graph, respectively. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 38 条
[1]  
[Anonymous], MATCH COMMUN MATH CO
[2]   A BOUND FOR THE PERMANENT OF THE LAPLACIAN MATRIX [J].
BAPAT, RB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 74 :219-223
[3]  
Borowiecki Mieczyslaw, 1982, Discuss. Math., V5, P9
[4]  
Borowiecki Mieczyslaw, 1985, Publ. Inst. Math. (Belgr.), V38, P31
[5]   PERMANENT OF THE LAPLACIAN MATRIX OF TREES AND BIPARTITE GRAPHS [J].
BRUALDI, RA ;
GOLDWASSER, JL .
DISCRETE MATHEMATICS, 1984, 48 (01) :1-21
[6]  
Brualdi RA, 2009, CRC DISCR MATH APPL, P1
[7]  
Cash GG, 2004, MATCH-COMMUN MATH CO, P129
[8]   A differential-operator approach to the permanental polynomial [J].
Cash, GG .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (05) :1132-1135
[9]   The permanental polynomial [J].
Cash, GG .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05) :1203-1206
[10]   Permanental polynomials of the smaller fullerenes [J].
Cash, GG .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05) :1207-1209