On a weighted core inverse in a ring with involution

被引:35
作者
Mosic, Dijana [1 ]
Deng, Chunyuan [2 ]
Ma, Haifeng [3 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
[2] South China Normal Univ, Sch Math Sci, Guangzhou, Guangdong, Peoples R China
[3] Harbin Normal Univ, Sch Math Sci, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Core inverse; core partial order; dual-core inverse; weighted-EP element; C-ASTERISK-ALGEBRAS; GENERALIZED INVERSES; MOORE-PENROSE; EP ELEMENTS; SHARP; STAR;
D O I
10.1080/00927872.2017.1378895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and investigate the e-core inverse and f-dual core inverse in a ring with involution as extensions of the core and dual core inverse, respectively. Using these definitions, we present and characterize the e-core partial order and the f-dual core partial order. We describe the sets of all elements a Rickart -ring which are below a given element under the e-core and f-dual core partial order. New characterizations of weighted-EP elements are given too.
引用
收藏
页码:2332 / 2345
页数:14
相关论文
共 20 条
[1]  
[Anonymous], 1972, Grundlehren der mathematischen Wissenschaften
[2]   Core inverse of matrices [J].
Baksalary, Oskar Maria ;
Trenkler, Goetz .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) :681-697
[3]   GENERALIZED INVERSES OVER INTEGRAL-DOMAINS [J].
BAPAT, RB ;
RAO, KPSB ;
PRASAD, KM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 140 :181-196
[4]   Moore-Penrose inverses and commuting elements of C*-algebras [J].
Benitez, Julio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :766-770
[5]   Outer generalized inverses in rings [J].
Djordjevic, DS ;
Wei, YM .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) :3051-3060
[6]   NOTE ON GROUP STRUCTURE OF UNIT REGULAR RING ELEMENTS [J].
HARTWIG, RE ;
LUH, J .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 71 (02) :449-461
[7]   Elements of rings with equal spectral idempotents [J].
Koliha, JJ ;
Patricio, P .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :137-152
[8]   ON STAR, SHARP, CORE, AND MINUS PARTIAL ORDERS IN RICKART RINGS [J].
Marovt, Janko .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (03) :495-508
[9]  
Mosic D, 2011, ELECTRON J LINEAR AL, V22, P912
[10]   Further results on partial isometries and EP elements in rings with involution [J].
Mosic, Dijana ;
Djordjevic, Dragan S. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :460-465