The SINAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana

被引:35
|
作者
Wu, Dandan [1 ]
Sun, Yinghao [1 ]
Wang, Hongfei [1 ]
Shi, He [1 ]
Su, Mingxing [1 ]
Shan, Hongyan [1 ]
Li, Tongtong [1 ]
Li, Qiuli [1 ]
机构
[1] Liaoning Normal Univ, Coll Life Sci, Key Lab Plant Biotechnol Liaoning Prov, Dalian 116081, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
NAC transcription factor; Transgenic plants; Drought stress; Salt stress; Suaeda liaotungensis K; NAC TRANSCRIPTION FACTOR; GRAIN-YIELD; OVEREXPRESSION; EXPRESSION; PLANTS; WHEAT; COLD; RESISTANCE; RESPONSES; IMPROVES;
D O I
10.1016/j.gene.2018.04.012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SINAC8 from Suaeda liaotungensis K. was characterized. S1NAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SINAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SWAGS in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, S1NAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. S1NAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering.
引用
收藏
页码:10 / 20
页数:11
相关论文
共 50 条
  • [21] Over-expression of an Arabidopsis δ-OAT gene enhances salt and drought tolerance in transgenic rice
    Wu, LQ
    Fan, ZM
    Guo, L
    Li, YQ
    Zhang, WJ
    Qu, LJ
    Chen, ZL
    CHINESE SCIENCE BULLETIN, 2003, 48 (23): : 2594 - 2600
  • [22] Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana
    Jin, Xiaofeng
    Xue, Yong
    Wang, Ren
    Xu, RanRan
    Bian, Lin
    Zhu, Bo
    Han, Hongjuan
    Peng, Rihe
    Yao, Quanhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (02) : 1743 - 1752
  • [23] The Wheat Gene TaVQ14 Confers Salt and Drought Tolerance in Transgenic Arabidopsis thaliana Plants
    Cheng, Xinran
    Yao, Hui
    Cheng, Zuming
    Tian, Bingbing
    Gao, Chang
    Gao, Wei
    Yan, Shengnan
    Cao, Jiajia
    Pan, Xu
    Lu, Jie
    Ma, Chuanxi
    Chang, Cheng
    Zhang, Haiping
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [24] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Yanfei Zhu
    Quanjia Chen
    Xiaodong Liu
    Yanying Qu
    Theoretical and Experimental Plant Physiology, 2021, 33 : 427 - 441
  • [25] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Zhu, Yanfei
    Chen, Quanjia
    Liu, Xiaodong
    Qu, Yanying
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2021, 33 (04) : 427 - 441
  • [26] Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana
    Ma, Xiaoli
    Cui, Weina
    Liang, Wenji
    Huang, Zhanjing
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 97 : 187 - 195
  • [27] The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants
    Yu, Ting
    Dong, Wei
    Hou, Xinwei
    Sun, Aiqing
    Li, Xinzheng
    Yu, Shaowei
    Zhang, Jiedao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [28] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Zhao, Qing
    Wang, Gang
    Ji, Jing
    Jin, Chao
    Wu, Weidang
    Zhao, Jia
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 23 (02) : 190 - 198
  • [29] A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana
    Feibing Wang
    Hong Zhu
    Dahu Chen
    Zhenjun Li
    Rihe Peng
    Quanhong Yao
    Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125 : 387 - 398
  • [30] A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana
    Wang, Feibing
    Zhu, Hong
    Chen, Dahu
    Li, Zhenjun
    Peng, Rihe
    Yao, Quanhong
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 125 (02) : 387 - 398