An Analytic Calculus for the Intuitionistic Logic of Proofs

被引:0
作者
Hill, Brian [1 ]
Poggiolesi, Francesca [2 ]
机构
[1] HEC Paris, Grp Rech & Etud Gest HEC Paris GREGHEC, CNRS, Jouy En Josas, France
[2] Univ Paris 1 Pantheon Sorbonne, CNRS, IHPST, UMR8590, Paris, France
关键词
cut-elimination; logic of proofs; normalization; proof sequents;
D O I
10.1215/00294527-2019-0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this article is to take a step toward the resolution of the problem of finding an analytic sequent calculus for the logic of proofs. For this, we focus on the system Ilp, the intuitionistic version of the logic of proofs. First we present the sequent calculus Gilp that is sound and complete with respect to the system Ilp; we prove that Gilp is cut-free and contraction-free, but it still does not enjoy the subformula property. Then, we enrich the language of the logic of proofs and we formulate in this language a second Gentzen calculus Gilp*. We show that Gilp* is a conservative extension of Gilp, and that Gilp* satisfies the subformula property.
引用
收藏
页码:353 / 393
页数:41
相关论文
共 16 条
  • [1] Artemov S. N., 2001, CSLI LECT NOTES, V144, P1
  • [2] Explicit provability and constructive semantics
    Artemov, SN
    [J]. BULLETIN OF SYMBOLIC LOGIC, 2001, 7 (01) : 1 - 36
  • [3] Avron A., 1996, Logic: From foundations to applications. European logic colloquium, P1
  • [4] Barendregt H., 1992, HDB LOGIC COMPUTER S, V2, P120
  • [5] Mkrtychev A., 1997, Logical Foundations of Computer Science. 4th International Symposium, LFCS '97. Proceedings, P266
  • [6] Paoli F., 2002, TRENDS LOGIC STUDIA, V13, DOI 10.1007/978-94-017-3179-9.354
  • [7] Poggiolesi F., 2010, P 2 ILCLI INT WORKSH, P371
  • [8] Poggiolesi F., 2012, P 3 WORKSH PHIL INF
  • [9] Poggiolesi F, 2012, LOG ANAL, P443
  • [10] Poggiolesi F, 2011, TRENDS LOG STUD LOG, V32, P3, DOI 10.1007/978-90-481-9670-8_1