Quantum criticality from Fisher information

被引:15
|
作者
Song, Hongting [1 ]
Luo, Shunlong [2 ]
Fu, Shuangshuang [3 ]
机构
[1] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
关键词
Quantum criticality; Quantum phase transition; Quantum Fisher information; Quantum metrology; STATISTICAL DISTANCE; DISCORD;
D O I
10.1007/s11128-017-1543-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phase transition is primarily characterized by a qualitative sudden change in the ground state of a quantum system when an external or internal parameter of the Hamiltonian is continuously varied. Investigating quantum criticality using information- theoretic methods has generated fruitful results. Quantum correlations and fidelity have been exploited to characterize the quantum critical phenomena. In this work, we employ quantum Fisher information to study quantum criticality. The singular or extremal point of the quantum Fisher information is adopted as the estimated thermal critical point. By a significant model constructed in Quan et al. (Phys Rev Lett 96: 140604, 2006), the effectiveness of this method is illustrated explicitly.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Quantum criticality from Fisher information
    Hongting Song
    Shunlong Luo
    Shuangshuang Fu
    Quantum Information Processing, 2017, 16
  • [2] Development on quantum metrology with quantum Fisher information
    Ren Zhi-Hong
    Li Yan
    Li Yan-Na
    Li Wei-Dong
    ACTA PHYSICA SINICA, 2019, 68 (04)
  • [3] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [4] Quantum Fisher information width in quantum metrology
    Liu, Bo
    Li, GuoLong
    Che, YanMing
    Chen, Jie
    Wang, XiaoGuang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (04)
  • [5] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (04) : 33 - 41
  • [6] Quantum Fisher information power of quantum evolutions
    Zhao, Jun-Long
    Zhou, Yan-Hui
    Chen, Dong-Xu
    Su, Qi-Ping
    Zong, Xiao-Lan
    Wu, Qi-Cheng
    Yang, Ming
    Yang, Chui-Ping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (27)
  • [7] Quantum Fisher Information for Density Matrices with Arbitrary Ranks
    Liu Jing
    Jing Xiao-Xing
    Zhong Wei
    Wang Xiao-Guang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (01) : 45 - 50
  • [8] Maximal quantum Fisher information matrix
    Chen, Yu
    Yuan, Haidong
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [9] Taming singularities of the quantum Fisher information
    Goldberg, Aaron Z.
    Romero, Jose L.
    Sanz, Angel S.
    Sanchez-Soto, Luis L.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2021, 19 (08)
  • [10] Protecting Quantum Fisher Information in Correlated Quantum Channels
    Hu, Ming-Liang
    Wang, Hui-Fang
    ANNALEN DER PHYSIK, 2020, 532 (01)