Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide electrolyser

被引:147
作者
Lu, Jinhai [1 ]
Zhu, Changli [1 ]
Pan, Changchang [1 ]
Lin, Wenlie [2 ]
Lemmon, John P. [3 ]
Chen, Fanglin [4 ]
Li, Chunsen [2 ]
Xie, Kui [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[3] Natl Inst Clean & Low Carbon Energy, Beijing 102211, Peoples R China
[4] Univ South Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 03期
基金
美国国家科学基金会;
关键词
TEMPERATURE; CARBON; CATALYSTS; ANODE; METHANE; NANOPARTICLES; PEROVSKITE;
D O I
10.1126/sciadv.aar5100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reforming CH4 into syngas using CO2 remains a fundamental challenge due to carbon deposition and nanocatalyst instability. We, for the first time, demonstrate highly efficient electrochemical reforming of CH4/CO2 to produce syngas in a solid oxide electrolyser with CO2 electrolysis in the cathode and CH4 oxidation in the anode. In situ exsolution of an anchored metal/oxide interface on perovskite electrode delivers remarkably enhanced coking resistance and catalyst stability. In situ Fourier transform infrared characterizations combined with first principle calculations disclose the interface activation of CO2 at a transition state between a CO2 molecule and a carbonate ion. Carbon removal at the interfaces is highly favorable with electrochemically provided oxygen species, even in the presence of H-2 or H2O. This novel strategy provides optimal performance with no obvious degradation after 300 hours of high-temperature operation and 10 redox cycles, suggesting a reliable process for conversion of CH4 into syngas using CO2.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] [Anonymous], ACS APPL MAT INTERFA
  • [2] A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes
    Bastidas, DM
    Tao, SW
    Irvine, JTS
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (17) : 1603 - 1605
  • [3] Barium Substituted Lanthanum Manganite Perovskite for CO2 Reforming of Methane
    Bhavani, Annabathini Geetha
    Kim, Won Yong
    Lee, Jae Sung
    [J]. ACS CATALYSIS, 2013, 3 (07): : 1537 - 1544
  • [4] Adhesion and Percolation Parameters in Two Dimensional Pd-LSCM Composites for SOFC Anode Current Collection
    Boulfrad, Samir
    Cassidy, Mark
    Irvine, John T. S.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (05) : 861 - 866
  • [5] High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells
    Ebbesen, Sune Dalgaard
    Jensen, Soren Hojgaard
    Hauch, Anne
    Mogensen, Mogens Bjerg
    [J]. CHEMICAL REVIEWS, 2014, 114 (21) : 10697 - 10734
  • [6] In Situ Spectroscopic Study of CO2 Electroreduction at Copper Electrodes in Acetonitrile
    Figueiredo, Marta C.
    Ledezma-Yanez, Isis
    Koper, Marc T. M.
    [J]. ACS CATALYSIS, 2016, 6 (04): : 2382 - 2392
  • [7] Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes
    Han, Fudong
    Zhu, Yizhou
    He, Xingfeng
    Mo, Yifei
    Wang, Chunsheng
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (08)
  • [8] A climbing image nudged elastic band method for finding saddle points and minimum energy paths
    Henkelman, G
    Uberuaga, BP
    Jónsson, H
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) : 9901 - 9904
  • [9] An Intermediate Temperature Solid Oxide Fuel Cell Utilizing Superior Oxide Ion Conducting Electrolyte, Doubly Doped LaGaO3 Perovskite
    Ishihara, T.
    Honda, M.
    Shibayama, T.
    Furutani, H.
    Takita, Y.
    [J]. IONICS, 1998, 4 (5-6) : 395 - 402
  • [10] Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte
    Ishihara, Tatsumi
    Jirathiwathanakul, Nitiphong
    Zhong, Hao
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (05) : 665 - 672