A comparative study of solution-processed low-and high-band-gap chalcopyrite thin-film solar cells

被引:18
作者
Park, Se Jin [1 ,2 ]
Cho, Yunae [3 ]
Moon, Sung Hwan [1 ]
Kim, Ji Eun [3 ]
Lee, Doh-Kwon [4 ]
Gwak, Jihye [5 ]
Kim, Jihyun [2 ]
Kim, Dong-Wook [3 ]
Min, Byoung Koun [1 ,6 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea
[2] Korea Univ, Dept Chem & Biol Engn, Seoul 136713, South Korea
[3] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea
[4] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 136791, South Korea
[5] Korea Inst Energy Res, Photovolta Res Ctr, Taejon 305343, South Korea
[6] Korea Univ, Green Sch, Seoul 136713, South Korea
基金
新加坡国家研究基金会;
关键词
solar cell; chalcopyrite; solution-process; ELECTRICAL-PROPERTIES; TRANSPORT; CUINSE2; OFFSET;
D O I
10.1088/0022-3727/47/13/135105
中图分类号
O59 [应用物理学];
学科分类号
摘要
Low-cost and printable chalcopyrite thin-film solar cells were fabricated by a precursor solution-based coating method with a multi-step heat-treatment process (oxidation, sulfurization, and selenization). The high-band-gap (1.57 eV) Cu (InxGa1-x) S-2 (CIGS) solar cell showed a high open-circuit voltage of 787 mV, whereas the low-band-gap (1.12 eV) Cu (InxGa1-x) (S1-ySey )(2) (CIGSSe) cell exhibited a high short-circuit current density of 32.6 mA cm(-2). The energy conversion efficiencies were 8.28% for CIGS and 8.81% for CIGSSe under standard irradiation conditions. Despite similar efficiencies, the two samples showed notable differences in grain size, surface morphology, and interfacial properties. Low-temperature transport and admittance characteristics of the samples clearly revealed how their structural differences influenced their photovoltaic and electrical properties. Such analyses provide insight into the enhanced solar cell performance of the solution-processed chalcopyrite thin films.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] An analysis of the effect of illumination to the reverse and forward bias current transport mechanisms in an efficient n-ZnO/n-CdS/p-Cu(In,Ga)Se2 solar cell
    Bayhan, Habibe
    Bayhan, Murat
    [J]. SOLAR ENERGY, 2013, 87 : 168 - 175
  • [2] Compound polycrystalline solar cells: Recent progress and Y2K perspective
    Birkmire, RW
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) : 17 - 28
  • [3] Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells
    Chirvase, D
    Chiguvare, Z
    Knipper, M
    Parisi, J
    Dyakonov, V
    Hummelen, JC
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (06) : 3376 - 3383
  • [4] Influence of shunt conduction on determining the dominant recombination processes in CIGS thin-film solar cells
    Cho, Yunae
    Lee, Eunsongyi
    Kim, Dong-Wook
    Ahn, Sejin
    Jeong, Guk Yeong
    Gwak, Jihye
    Yun, Jae Ho
    Kim, Hogyoung
    [J]. CURRENT APPLIED PHYSICS, 2013, 13 (01) : 37 - 40
  • [5] Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency
    Contreras, Miguel A.
    Mansfield, Lorelle M.
    Egaas, Brian
    Li, Jian
    Romero, Manuel
    Noufi, Rommel
    Rudiger-Voigt, Eveline
    Mannstadt, Wolfgang
    [J]. PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07): : 843 - 850
  • [6] Admittance spectroscopy of cadmium free CIGS solar cells heterointerfaces
    Djebbour, Z.
    Darga, A.
    Dubois, A. Migan
    Mencaraglia, D.
    Naghavi, N.
    Guillemoles, J. -F.
    Lincot, D.
    [J]. THIN SOLID FILMS, 2006, 511 : 320 - 324
  • [7] A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors
    Dullweber, T
    Hanna, G
    Rau, U
    Schock, HW
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) : 145 - 150
  • [8] Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells
    Eisenbarth, Tobias
    Unold, Thomas
    Caballero, Raquel
    Kaufmann, Christian A.
    Schock, Hans-Werner
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
  • [9] Efficiency limitations for wide-band-gap chalcopyrite solar cells
    Gloeckler, M
    Sites, JR
    [J]. THIN SOLID FILMS, 2005, 480 : 241 - 245
  • [10] Solar cell efficiency tables (version 41)
    Green, Martin A.
    Emery, Keith
    Hishikawa, Yoshihiro
    Warta, Wilhelm
    Dunlop, Ewan D.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01): : 1 - 11