Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

被引:6
作者
Tang, X. H. [1 ]
Lin, Xiaoyan
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
[2] Huaihua Univ, Dept Math, Huaihua 418008, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
first order neutral differential equation; superlinear; sublinear; oscillation;
D O I
10.1016/j.jmaa.2005.07.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that every solution of the first order nonlinear neutral differential equation [x(t) - px(t - tau)]' + q(t) (j=1)Pi(m) vertical bar x(t - sigma(j))vertical bar(beta j) sign[x(t - sigma(1))] = 0. t >= t(0), oscillates if and only if (t0)integral(infinity) q(s) exp[tau(-1) ln p((j=1)Sigma(m) beta(j) - 1)s]ds = infinity, when (Sigma(m)(j=1) beta(j) - 1) ln p < 0, and (t0)integral(infinity) q(s)ds = infinity, when (Sigma(m)(j=1) beta(j) - 1) ln p > 0, where p, tau > 0, beta(j) > 0, sigma(j) >= 0, j = 1, 2, . . ., m, q is an element of C ([t(0), infinity), [0, infinity)). (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:553 / 568
页数:16
相关论文
共 8 条
[1]  
Erbe L.H., 1995, Oscillation Theory for Functional Differential Equations
[2]  
GYORI I, 1991, OSICLLATION THEORY D
[3]   Oscillation for first-order nonlinear delay differential equations [J].
Tang, XH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (02) :510-521
[4]  
TANG XH, 1997, HUNAN ANN MATH, V17, P57
[5]  
Tang Xianhua, 2000, Applied Mathematics. Series B, A Journal of Chinese Universities, V15, P21
[6]  
WANG LW, 1991, ACTA MATH APPL SIN-E, V14, P348
[7]  
YU JS, 1990, ACTA MATH SINICA, V33, P152
[8]   OSCILLATION AND NONOSCILLATION FOR NEUTRAL DIFFERENTIAL-EQUATIONS [J].
ZHANG, BG ;
YU, JS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 172 (01) :11-23