Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site

被引:354
作者
Xiao, Meiling [1 ]
Zhang, Hao [3 ]
Chen, Yongting [4 ]
Zhu, Jianbing [1 ]
Gao, Liqin [1 ]
Jin, Zhao [2 ]
Ge, Junjie [2 ]
Jiang, Zheng [3 ]
Chen, Shengli [4 ]
Liu, Changpeng [2 ]
Xing, Wei [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, Lab Adv Power Sources, Changchun 130022, Jilin, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[4] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Binuclear active site; Oxygen reduction reaction; Electrocatalyst; X-ray absorption spectroscopy; Fuel cells; FUEL-CELL; FE/N/C-CATALYSTS; IRON; ELECTROCATALYSTS; CARBON; SPECTROSCOPY; MODEL; WATER;
D O I
10.1016/j.nanoen.2018.02.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, a novel binuclear active site structure, Co2NxCy, is intentionally designed and successfully fabricated to efficiently catalyze the oxygen reduction reaction (ORR), which is achieved by precisely controlling the atomic scale structure of bimetal-organic frameworks before pyrolysis. Through discovering a two-atom site with Co-Co distance at 2.1-2.2 angstrom from aberration-corrected scanning transmission electron microscopy (STEM), as well as a novel shortened Co-Co path (2.12 angstrom) from the X-ray absorption spectroscopy, we for the first time identified the binuclear Co2NX site in the pyrolyzed catalyst. Combined with density functional theory (DFT) calculation, the structure is further confirmed as Co2N5. Excitingly, the Co2N5 site performs approximately 12 times higher activity than the conventional CoN4 site and the corresponding catalyst shows unprecedented catalytic activity in acidic electrolyte with half-wave potential of 0.79 V, approaching the commercial Pt/C catalyst and presenting the best one among the Co-N-C catalysts. Theoretical density functional theory calculations reveal that the novel binuclear site exhibits considerably reduced thermodynamic barrier towards ORR, thus contributing to the much higher intrinsic activity. Our finding opens up a new path to design efficient M-N-x/C catalysts, thus pushing the fuel cell industry field one step ahead.
引用
收藏
页码:396 / 403
页数:8
相关论文
共 35 条
[1]  
Bhagi-Damodaran A, 2017, NAT CHEM, V9, P257, DOI [10.1038/nchem.2643, 10.1038/NCHEM.2643]
[2]   Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction [J].
Chen, Xiaoqi ;
Yu, Liang ;
Wang, Suheng ;
Deng, Dehui ;
Bao, Xinhe .
NANO ENERGY, 2017, 32 :353-358
[3]   Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction [J].
Chen, Yuanjun ;
Ji, Shufang ;
Wang, Yanggang ;
Dong, Juncai ;
Chen, Wenxing ;
Li, Zhi ;
Shen, Rongan ;
Zheng, Lirong ;
Zhuang, Zhongbin ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6937-6941
[4]   A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux [J].
Collman, James P. ;
Devaraj, Neal K. ;
Decreau, Richard A. ;
Yang, Ying ;
Yan, Yi-Long ;
Ebina, Wataru ;
Eberspacher, Todd A. ;
Chidsey, Christopher E. D. .
SCIENCE, 2007, 315 (5818) :1565-1568
[5]   Catalytic Reduction of O2 by Cytochrome c Using a Synthetic Model of Cytochrome c Oxidase [J].
Collman, James P. ;
Ghosh, Somdatta ;
Dey, Abhishek ;
Decreau, Richard A. ;
Yang, Ying .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (14) :5034-+
[6]   ELECTRODE CATALYSIS OF THE 4-ELECTRON REDUCTION OF OXYGEN TO WATER BY DICOBALT FACE-TO-FACE PORPHYRINS [J].
COLLMAN, JP ;
DENISEVICH, P ;
KONAI, Y ;
MARROCCO, M ;
KOVAL, C ;
ANSON, FC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (19) :6027-6036
[7]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[8]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[9]   A new FEFF-based wavelet for EXAFS data analysis [J].
Funke, Harald ;
Chukalina, Marina ;
Scheinost, Andreas C. .
JOURNAL OF SYNCHROTRON RADIATION, 2007, 14 :426-432
[10]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799