Bezier Variant of the Szasz-Durrmeyer Type Operators Based on the Poisson-Charlier Polynomials

被引:2
作者
Kajla, Arun [1 ]
Miclaus, Dan [2 ]
机构
[1] Cent Univ Haryana, Dept Math, Jant 123031, Haryana, India
[2] Tech Univ Cluj Napoca, North Univ Ctr Baia Mare, Dept Math & Comp Sci, Victoriei 76, Baia Mare 430122, Romania
关键词
Bezier curve; Szasz operator; Poisson-Charlier polynomials; rate of convergence; bounded variation; APPROXIMATION; CONVERGENCE;
D O I
10.2298/FIL2010265K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we introduce the Bezier variant of the Szasz-Durrmeyer type operators, involving the Poisson-Charlier polynomials. Our study focuses on a direct approximation theorem in terms of the Ditzian-Totik modulus of smoothness and the rate of convergence for differential functions whose derivatives are of bounded variation.
引用
收藏
页码:3265 / 3273
页数:9
相关论文
共 23 条
[1]  
Abel U., 2003, DEMONSTR MATH, V36, P123, DOI DOI 10.1515/DEMA-2003-0114
[2]   BLENDING TYPE APPROXIMATION BY BEZIER-SUMMATION-INTEGRAL TYPE OPERATORS [J].
Acar, Tuncer ;
Kajla, Arun .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (02) :195-208
[3]   Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functions [J].
Agrawal, P. N. ;
Ispir, Nurhayat ;
Kajla, Arun .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :533-539
[4]   Approximation degree of Durrmeyer-Bezier type operators [J].
Agrawal, Purshottam N. ;
Araci, Serkan ;
Bohner, Martin ;
Lipi, Kumari .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[5]  
[Anonymous], 1975, AMS C PUBLICATIONS
[6]  
Bernstein S., 1912, Comm. Kharkov Math. Soc., V13
[7]  
Chang G., 1983, J COMPUT MATH, V1, P322
[8]  
Ditzian Z., 1987, Moduli of Smoothness
[9]   The central approximation theorems for Baskakov-Bezier operators [J].
Guo, Shunsheng ;
Qi, Qiulan ;
Liu, Guofen .
JOURNAL OF APPROXIMATION THEORY, 2007, 147 (01) :112-124
[10]  
Gupta V, 2004, COMPUT MATH APPL, V47, P227, DOI 10.1016/S0898-1221(04)00027-6