Radio Frequency Identification (RFID) is one of the critical technologies of the Internet of Things (IoT). With the rapid development of IoT and the extensive use of MD in our life, the pace of RFID development should be increased. However, the tags in an RFID system are more and more utilized, all of them communicate in the same channel. The RFID reader receives mixed signals, and the reader cannot get the correct message the tags send directly. This phenomenon is often called a collision, which is the main obstacle to the development of the RFID system. Traditionally, the algorithm to solve the collision problem is called the anti-collision algorithm, the widely used anti-collision algorithm is based on Time Division Multiple Access (TDMA) like ALOHA-based and Binary search-based anti-collision algorithm. The principle of the TDMA-based anti-collision algorithm is to narrow the response of tags to one in each query time. These anti-collision algorithms perform poorly when the number of tags is huge, thus, some researchers proposed the Blind Source Separation (BSS)-based anti-collision algorithm. The blind anti-collision algorithms perform better than the TDMA-based algorithms; it is meaningful to do some more research about this filed. This paper uses several BSS algorithms like FastICA, PowerICA, ICA_p, and SNR_MAX to separate the mixed signals in the MD system and compare the performance of them. Simulation results and analysis demonstrate that the ICA_p algorithm has the best comprehensive performance among the mentioned algorithms. The FastICA algorithm is very unstable, and has a lower separation success rate, and the SNR_MAX algorithm has the worst performance among the algorithms applied in the RFID system. Some advice for future work will be put up in the end.