Model verification tools: a computational framework for verification assessment of mechanistic agent-based models

被引:2
作者
Russo, Giulia [1 ]
Palumbo, Giuseppe Alessandro Parasiliti [2 ]
Pennisi, Marzio [3 ]
Pappalardo, Francesco [1 ]
机构
[1] Univ Catania, Dept Drug & Hlth Sci, I-95125 Catania, Italy
[2] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
[3] Univ Piemonte Orientale, Comp Sci Inst, DiSIT, I-15121 Alessandria, Italy
基金
欧盟地平线“2020”;
关键词
Agent-based models; Verification assessment; In silico trials; Medicinal product; Regulatory context; COVID-19; IN-SILICO TRIAL; SENSITIVITY-ANALYSIS; CREDIBILITY; DESIGN;
D O I
10.1186/s12859-022-04684-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Nowadays, the inception of computer modeling and simulation in life science is a matter of fact. This is one of the reasons why regulatory authorities are open in considering in silico trials evidence for the assessment of safeness and efficacy of medicinal products. In this context, mechanistic Agent-Based Models are increasingly used. Unfortunately, there is still a lack of consensus in the verification assessment of Agent-Based Models for regulatory approval needs. VV&UQ is an ASME standard specifically suited for the verification, validation, and uncertainty quantification of medical devices. However, it can also be adapted for the verification assessment of in silico trials for medicinal products. Results Here, we propose a set of automatic tools for the mechanistic Agent-Based Model verification assessment. As a working example, we applied the verification framework to an Agent-Based Model in silico trial used in the COVID-19 context. Conclusions Using the described verification computational workflow allows researchers and practitioners to easily perform verification steps to prove Agent-Based Models robustness and correctness that provide strong evidence for further regulatory requirements.
引用
收藏
页数:19
相关论文
共 26 条
[1]  
American Society of Mechanical Engineers, 2018, VV402018 ASME, P60
[2]   Verification of an agent-based disease model of human Mycobacterium tuberculosis infection [J].
Curreli, Cristina ;
Pappalardo, Francesco ;
Russo, Giulia ;
Pennisi, Marzio ;
Kiagias, Dimitrios ;
Juarez, Miguel ;
Viceconti, Marco .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2021, 37 (07)
[3]  
Davies MN, 2017, METHODS MOL BIOL, V1494, P107, DOI 10.1007/978-1-4939-6445-1_8
[4]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[5]  
Herman J., 2017, J OPEN SOURCE SOFTW, V2, P97, DOI DOI 10.21105/JOSS.00097
[6]  
IEEE, 2014, 7302014 IEEE, P1138
[7]  
Lindstrom G., 2005, IT Professional, V7, P10, DOI 10.1109/MITP.2005.120
[8]   A methodology for performing global uncertainty and sensitivity analysis in systems biology [J].
Marino, Simeone ;
Hogue, Ian B. ;
Ray, Christian J. ;
Kirschner, Denise E. .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (01) :178-196
[9]   Uncertainty and variability in computational and mathematical models of cardiac physiology [J].
Mirams, Gary R. ;
Pathmanathan, Pras ;
Gray, Richard A. ;
Challenor, Peter ;
Clayton, Richard H. .
JOURNAL OF PHYSIOLOGY-LONDON, 2016, 594 (23) :6833-6847
[10]  
Palumbo GAP, 2020, PROCEEDINGS2020 IEEE