Drawing Complete Multipartite Graphs on the Plane with Restrictions on Crossings

被引:23
作者
Zhang, Xin [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
1-Planar graph; independent crossings; crossing number; NUMBER; 1-PLANARITY;
D O I
10.1007/s10114-014-3763-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. A plane graph with near independent crossings (say NIC-planar graph) is a 1-planar graph with the restriction that for any two crossings the four crossed edges are incident with at most one common vertex. The full characterization of NIC-planar complete and complete multipartite graphs is given in this paper.
引用
收藏
页码:2045 / 2053
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 1971, RECENT TRENDS GRAPH, DOI DOI 10.1007/BFB0059432
[2]   THE CROSSING NUMBER OF K1,3,N AND K2,3,N [J].
ASANO, K .
JOURNAL OF GRAPH THEORY, 1986, 10 (01) :1-8
[3]  
Bondy JA, 2008, Grad. Texts Math, V244, DOI DOI 10.1007/978-1-84628-970-5
[4]  
Borodin O. V., 1984, DISKRET ANAL, V41, P12
[5]   A NEW PROOF OF THE 6 COLOR THEOREM [J].
BORODIN, OV .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :507-521
[6]   1-planarity of complete multipartite graphs [J].
Czap, Julius ;
Hudak, David .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) :505-512
[7]  
de Klerk E, 2007, MATH PROGRAM, V109, P613, DOI 10.1007/s10107-006-0039-7
[8]  
Ho PT, 2009, UTILITAS MATHEMATICA, V79, P125
[9]   The crossing number of K1,4,n [J].
Huang, Yuanqiu ;
Zhao, Tinglei .
DISCRETE MATHEMATICS, 2008, 308 (09) :1634-1638
[10]  
Kleitman D. J., 1970, Journal of Combinatorial Theory, Series A, V9, P315, DOI 10.1016/S0021-9800(70)80087-4