3D Indoor Map Building with Monte Carlo Localization in 2D Map

被引:0
作者
Zhao, Lei [1 ]
Fan, Zhun [1 ]
Li, Wenji [1 ]
Xie, Honghui [1 ]
Xiao, Yang [1 ]
机构
[1] Shantou Univ, Dept Elect Engn, Shantou 515063, Guangdong, Peoples R China
来源
2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII) | 2016年
基金
中国国家自然科学基金;
关键词
lidar; kinect; visual localization; Monte Carlo localization; 3D indoor map building;
D O I
10.1109/ICIICII.2016.29
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a 3D indoor map building method based on Monte Carlo localization in 2D map. The traditional 3D SLAM mainly adopts the visual odometry technology for robot localization. However, the visual localization has a poor real-time performance. Besides, in some special scenarios, such as corridors, the visual localization may generate matching errors, resulting in cumulative errors. These errors will lead to a wrong robot localization. The Monte Carlo localization based on lidar in 2D map can achieve a higher localization accuracy. Therefore, we use the above method to replace the visual localization while using a kinect to collect 3D environment information. To study the performance of the proposed method, we make some experiments and compare with the popular open source RGB-D SLAM system based on visual localization provided by Felix Endres et al. in 2014. The experimental results demonstrate that our method has better effect in the indoor corridor environment with less features.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 2008, SPRINGER HDB ROBOTIC, DOI DOI 10.1007/978-3-540-30301-5_38
[2]  
[Anonymous], 2000, C UNCERTAINTY ARTIFI
[3]   IMU and Multiple RGB-D Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning [J].
Chow, Jacky C. K. ;
Lichti, Derek D. ;
Hol, Jeroen D. ;
Bellusci, Giovanni ;
Luinge, Henk .
ROBOTICS, 2014, 3 (03) :247-280
[4]  
Dellaert F, 1999, ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, P1322, DOI 10.1109/ROBOT.1999.772544
[5]   3-D Mapping With an RGB-D Camera [J].
Endres, Felix ;
Hess, Juergen ;
Sturm, Juergen ;
Cremers, Daniel ;
Burgard, Wolfram .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (01) :177-187
[6]   Visual Odometry Part II: Matching, Robustness, Optimization, and Applications [J].
Fraundorfer, Friedrich ;
Scaramuzza, Davide .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (02) :78-90
[7]   Visual simultaneous localization and mapping: a survey [J].
Fuentes-Pacheco, Jorge ;
Ruiz-Ascencio, Jose ;
Manuel Rendon-Mancha, Juan .
ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (01) :55-81
[8]  
Grisetti G, 2005, IEEE INT CONF ROBOT, P2432
[9]   Improved techniques for grid mapping with Rao-Blackwellized particle filters [J].
Grisetti, Giorgio ;
Stachniss, Cyrill ;
Burgard, Wolfram .
IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (01) :34-46
[10]  
Hitomi EE, 2015, L N COMPUT VIS BIOME, V19, P379, DOI 10.1007/978-3-319-13407-9_22