A New Approach to Building the Gaussian Process Model for Expensive Multi-objective Optimization

被引:3
作者
Luo, Jianping [1 ]
Feng, Jiqiang [2 ]
Jin, RuoFan [3 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Guangdong Key Lab Intelligent Informat Proc, Shenzhen, Peoples R China
[2] Shenzhen Univ, Coll Math, Shenzhen, Peoples R China
[3] Shenzhen Univ, Coll Informat Engn, Shenzhen, Peoples R China
来源
2019 9TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2019) | 2019年
基金
中国国家自然科学基金;
关键词
Expensive optimization; Gaussian processes; multi-objective optimization; Multiple tasks; ALGORITHM;
D O I
10.1109/icist.2019.8836854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel approach to building a Gaussian process (GP) model for each objective more precisely is proposed in this study for expensive multi-objective optimization, where there may be little apparent similarity or correlation among objectives. These objectives are mapped to tasks where a similarity or correlation exists among them, and then these tasks are used to build the GP model jointly using multi-task GP (MTGP). This approach facilitates a mutual knowledge transfer across tasks and helps avoid tabula rasa learning for a new task and capture the structure in tasks that covary. The estimated value for each objective can be derived from the estimated values of the built MTGP model of the tasks with a reverse mapping. It also has been shown that the GP models of the well-known MOEA/D-EGO and ParEGO are both special cases of our approach. To solve the expensive multi-objective optimization problem, a multi-objective optimization framework based on this approach with MOEA/D is also developed. Experimental results show that the proposed algorithm performs better than several state-of-the-art multi-objective evolutionary algorithms.
引用
收藏
页码:374 / 379
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 2016, IEEE T EVOL COMPUT
[2]  
[Anonymous], 2010, IEEE C EV COMP
[3]  
[Anonymous], 2009, GEN EV COMP C
[4]  
Bhattacharya M., 2008, Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO '08, P2117
[5]  
Chugh T., 2015, TECHNICAL REPORT B
[6]   Solving multiobjective optimization problems using an artificial immune system [J].
Coello C.A.C. ;
Cortés N.C. .
Genetic Programming and Evolvable Machines, 2005, 6 (2) :163-190
[7]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[8]   An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints [J].
Deb, Kalyanmoy ;
Jain, Himanshu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) :577-601
[9]   Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems [J].
Deb, Kalyanmoy .
EVOLUTIONARY COMPUTATION, 1999, 7 (03) :205-230
[10]   Surrogate-assisted evolutionary computation: Recent advances and future challenges [J].
Jin, Yaochu .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (02) :61-70