Recent developments in proton exchange membranes for fuel cells

被引:440
作者
Devanathan, Ram [1 ]
机构
[1] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA
关键词
D O I
10.1039/b808149m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Proton exchange membranes (PEMs) that operate at temperatures above 120 degrees C are needed to avoid catalyst poisoning, enhance electrochemical reactions, simplify the design and reduce the cost of fuel cells. This review summarizes developments in PEMs over the last five years. In order to design new membranes for elevated temperature operation, one must understand the chemistry, morphology and dynamics of protons and water molecules in existing membranes. The integration of experiment with modelling and simulation can shed light on the hierarchical structure of the membrane and dynamical processes associated with molecular transport. Based on such a fundamental understanding, membranes can be modified by controlling the polymer chemistry and architecture or adding inorganic fillers that can retain water under low relative humidity conditions. The development of anhydrous membranes based on phosphoric acid doped polymers, ionic liquid-infused polymer gels and solid acids can enable fuel cell operation above 150 degrees C. Considerable work remains to be done to identify proton transport mechanisms in novel membranes and evaluate membrane durability under real world operating conditions.
引用
收藏
页码:101 / 119
页数:19
相关论文
共 174 条
  • [1] Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140° C
    Adjemian, KT
    Lee, SJ
    Srinivasan, S
    Benziger, J
    Bocarsly, AB
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) : A256 - A261
  • [2] Composite membranes for medium-temperature PEM fuel cells
    Alberti, G
    Casciola, M
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 129 - 154
  • [3] Polymeric proton conducting membranes for medium temperature fuel cells (110-160°C)
    Alberti, G
    Casciola, M
    Massinelli, L
    Bauer, B
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) : 73 - 81
  • [4] Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation
    Antonucci, PL
    Aricò, AS
    Cretì, P
    Ramunni, E
    Antonucci, V
    [J]. SOLID STATE IONICS, 1999, 125 (1-4) : 431 - 437
  • [5] Hyflon ion membranes for fuel cells
    Arcella, V
    Troglia, C
    Ghielmi, A
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (20) : 7646 - 7651
  • [6] Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells
    Arico, A. S.
    Baglio, V.
    Di Blasi, A.
    Antonucci, V.
    Cirillo, L.
    Ghielmi, A.
    Arcella, V.
    [J]. DESALINATION, 2006, 199 (1-3) : 271 - 273
  • [7] Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells
    Aricò, AS
    Baglio, V
    Di Blasi, A
    Creti, P
    Antonucci, PL
    Antonucci, V
    [J]. SOLID STATE IONICS, 2003, 161 (3-4) : 251 - 265
  • [8] Nafion® perfluorinated membranes in fuel cells
    Banerjee, S
    Curtin, DE
    [J]. JOURNAL OF FLUORINE CHEMISTRY, 2004, 125 (08) : 1211 - 1216
  • [9] Barbir F, 2005, SUSTAIN WORLD SER, P1
  • [10] Hydration and interfacial water in nafion membrane probed by transmission infrared spectroscopy
    Basnayake, Rukma
    Peterson, Geneva R.
    Casadonte, Dominick J., Jr.
    Korzeniewski, Carol
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (47) : 23938 - 23943