TOSELM: Timeliness Online Sequential Extreme Learning Machine

被引:41
作者
Gu, Yang [1 ,2 ]
Liu, Junfa [1 ]
Chen, Yiqiang [1 ]
Jiang, Xinlong [1 ,2 ]
Yu, Hanchao [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Timeliness; Online sequential learning; Adaptive weight; Adaptive iteration;
D O I
10.1016/j.neucom.2013.02.047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For handling data and training model, existing machine learning methods do not take timeliness problem into consideration. Timeliness here means the data distribution or the data trend changes with time passing by. Based on timeliness management scheme, a novel machine learning algorithm Timeliness Online Sequential Extreme Learning Machine (TOSELM) is proposed, which improves Online Sequential Extreme Learning Machine (OSELM) with central tendency and dispersion characteristics of data to deal with timeliness problem. The performance of proposed algorithm has been validated on several simulated and realistic datasets, and experimental results show that TOSELM utilizing adaptive weight scheme and iteration scheme can achieve higher learning accuracy, faster convergence and better stability than other machine learning methods. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [11] Research on Transformer Fault Diagnosis Based on Online Sequential Extreme Learning Machine
    Li, Yuancheng
    Wang, Xiaohan
    Zhang, Yingying
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2019, 12 (05) : 408 - 413
  • [12] Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
    Mao, Wentao
    He, Ling
    Yan, Yunju
    Wang, Jinwan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 83 : 450 - 473
  • [13] Time Series Prediction Based on Adaptive Weight Online Sequential Extreme Learning Machine
    Lu, Junjie
    Huang, Jinquan
    Lu, Feng
    APPLIED SCIENCES-BASEL, 2017, 7 (03):
  • [14] Density-based semi-supervised online sequential extreme learning machine
    Xia, Min
    Wang, Jie
    Liu, Jia
    Weng, Liguo
    Xu, Yiqing
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) : 7747 - 7758
  • [15] Power System Transient Stability Assessment Based on Online Sequential Extreme Learning Machine
    Li, Yang
    Gu, Xueping
    2013 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2013,
  • [16] Density-based semi-supervised online sequential extreme learning machine
    Min Xia
    Jie Wang
    Jia Liu
    Liguo Weng
    Yiqing Xu
    Neural Computing and Applications, 2020, 32 : 7747 - 7758
  • [17] Kalman filter-based method for Online Sequential Extreme Learning Machine for regression problems
    Nobrega, Jarley Palmeira
    Oliveira, Adriano L. I.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 44 : 101 - 110
  • [18] Online sequential prediction of imbalance data with two-stage hybrid strategy by extreme learning machine
    Mao, Wentao
    Wang, Jinwan
    He, Ling
    Tian, Yangyang
    NEUROCOMPUTING, 2017, 261 : 94 - 105
  • [19] Online sequential type-2 fuzzy wavelet extreme learning machine: A nonlinear observer application
    Esmaeilidehkordi, Mohammadreza
    Zekri, Maryam
    Izadi, Iman
    Sheikholeslam, Farid
    FUZZY SETS AND SYSTEMS, 2024, 481
  • [20] Online Assessment of Spontaneous Mental Fatigue in Construction Workers Considering Data Quality: Improved Online Sequential Extreme Learning Machine
    Fang, Xin
    Li, Heng
    Ma, Jie
    Xing, Xuejiao
    Ren, Qiubing
    Umer, Waleed
    Wang, Lei
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2024, 150 (11)