Bounding the size of square-free subgraphs of the hypercube

被引:19
作者
Thomason, Andrew [1 ]
Wagner, Peter [1 ]
机构
[1] DPMMS, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
Hypercube; n-cube; 4-cycle; CUBE;
D O I
10.1016/j.disc.2008.02.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the maximum size of a Subset of the edges of the n-cube that does not contain a square, or 4-cycle. The size of Such a subset is trivially at most 3/4 of the total number of edges, but the proportion was conjectured by Erdos to be asymptotically 1/2. Following a Computer investigation of the 4-cube and the 5-cube, we improve the known upper bound from 0.62284 ... to 0.62256 ... in the limit. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1730 / 1735
页数:6
相关论文
共 8 条
  • [1] A Ramsey-type result for the hypercube
    Alon, Noga
    Radoicic, Rados
    Sudakov, Benny
    Vondrak, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2006, 53 (03) : 196 - 208
  • [2] ON THE MAXIMUM NUMBER OF EDGES IN A C4-FREE SUBGRAPH OF Q(N)
    BRASS, P
    HARBORTH, H
    NIENBORG, H
    [J]. JOURNAL OF GRAPH THEORY, 1995, 19 (01) : 17 - 23
  • [3] SUBGRAPHS OF A HYPERCUBE CONTAINING NO SMALL EVEN CYCLES
    CHUNG, FRK
    [J]. JOURNAL OF GRAPH THEORY, 1992, 16 (03) : 273 - 286
  • [4] Erds P., 1984, Graph theory and combinatorics (Cambridge, 1983), P1
  • [5] Harborth H., 1994, B I COMBIN APPL, V12, P55
  • [6] LARGEST INDUCED SUBGRAPHS OF THE N-CUBE THAT CONTAIN NO 4-CYCLES
    JOHNSON, KA
    ENTRINGER, R
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (03) : 346 - 355
  • [7] Schelp RH, 2000, J GRAPH THEOR, V33, P66, DOI 10.1002/(SICI)1097-0118(200002)33:2<66::AID-JGT2>3.0.CO
  • [8] 2-L