Energy-storage covalent organic frameworks: improving performance via engineering polysulfide chains on walls

被引:147
作者
Xu, Fei [1 ]
Yang, Shuhao [1 ]
Chen, Xiong [2 ]
Liu, Qianhui [1 ]
Li, Hejun [1 ]
Wang, Hongqiang [1 ]
Wei, Bingqing [1 ]
Jiang, Donglin [3 ,4 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Ctr Nano Energy Mat, Sch Mat Sci & Engn,Shaanxi Joint Lab Graphene NPU, Xian 710072, Peoples R China
[2] Fuzhou Univ, State Key Lab Photocatalysis Energy & Environm, Coll Chem, Fuzhou 350116, Fujian, Peoples R China
[3] Natl Univ Singapore, Fac Sci, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
[4] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Fujian, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CATHODE MATERIALS; ELEMENTAL-SULFUR; CRYSTALLINE; CONSTRUCTION; NANOSHEETS; EFFICIENT; STRATEGY; PLATFORM; REMOVAL; COF;
D O I
10.1039/c8sc04518f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The aligned one-dimensional channels found in covalent organic frameworks offer a unique space for energy storage. However, physical isolation of sulfur in the channels is not sufficient to prevent the shuttle of lithium-sulfide intermediates that eventually results in a poor performance of lithium-sulfur energy storage. Herein, we report a strategy based on imine-linked frameworks for addressing this shuttle issue by covalently engineering polysulfide chains on the pore walls. The imine linkages can trigger the polymerization of sulfur to form polysulfide chains and anchor them on the channel walls. The immobilized polysulfide chains suppress the shuttle effect and are highly redox active. This structural evolution induces multifold positive effects on energy storage and achieves improved capacity, sulfur accessibility, rate capability and cycle stability. Our results suggest a porous platform achieved by pore wall engineering for tackling key issues in energy storage.
引用
收藏
页码:6001 / 6006
页数:6
相关论文
共 62 条
[1]   Gas storage in porous aromatic frameworks (PAFs) [J].
Ben, Teng ;
Pei, Cuiying ;
Zhang, Daliang ;
Xu, Jun ;
Deng, Feng ;
Jing, Xiaofei ;
Qiu, Shilun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3991-3999
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Phosphoric Acid Loaded Azo (-N=N-) Based Covalent Organic Framework for Proton Conduction [J].
Chandra, Suman ;
Kundu, Tanay ;
Kandambeth, Sharath ;
BabaRao, Ravichandar ;
Marathe, Yogesh ;
Kunjir, Shrikant M. ;
Banerjee, Rahul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (18) :6570-6573
[4]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/NCHEM.1624, 10.1038/nchem.1624]
[5]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[6]   An Azine-Linked Covalent Organic Framework [J].
Dalapati, Sasanka ;
Jin, Shangbin ;
Gao, Jia ;
Xu, Yanhong ;
Nagai, Atsushi ;
Jiang, Donglin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (46) :17310-17313
[7]   Porous Organic Materials: Strategic Design and Structure-Function Correlation [J].
Das, Saikat ;
Heasman, Patrick ;
Ben, Teng ;
Qiu, Shilun .
CHEMICAL REVIEWS, 2017, 117 (03) :1515-1563
[8]   β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage [J].
DeBlase, Catherine R. ;
Silberstein, Katharine E. ;
Thanh-Tam Truong ;
Abruna, Hector D. ;
Dichtel, William R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (45) :16821-16824
[9]   The atom, the molecule, and the covalent organic framework [J].
Diercks, Christian S. ;
Yaghi, Omar M. .
SCIENCE, 2017, 355 (6328)
[10]   Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II) [J].
Ding, San-Yuan ;
Dong, Ming ;
Wang, Ya-Wen ;
Chen, Yan-Tao ;
Wang, Huai-Zhen ;
Su, Cheng-Yong ;
Wang, Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (09) :3031-3037