Creep compliance mapping by atomic force microscopy

被引:30
作者
Braunsmann, Christoph [1 ,2 ]
Proksch, Roger [3 ]
Revenko, Irene [3 ]
Schaeffer, Tilman E. [1 ,2 ]
机构
[1] Univ Tubingen, Inst Appl Phys, D-72076 Tubingen, Germany
[2] Univ Tubingen, LISA, D-72076 Tubingen, Germany
[3] Asylum Res, Oxford Instruments Co, Santa Barbara, CA 93117 USA
关键词
Nanoindentation; Viscoelasticity; Double step loading; VISCOELASTIC PROPERTIES; NANOINDENTATION; POLYMERS; INDENTATION;
D O I
10.1016/j.polymer.2013.11.029
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We present a method for mapping the spatial distribution of viscoelastic properties of heterogeneous samples using the atomic force microscope (AFM). By applying a force step load protocol to induce time dependent sample indentations we measured the local creep compliance of the sample. The creep compliance was quantified in terms of the standard linear solid model to give maps of the instant glassy modulus, the equilibrium rubbery modulus, and the retardation time. To reduce the influence of plastic deformations, the sample was preformed with an initial preload step. Different polymer samples with a homogeneous or a heterogeneous material composition on a microscopic scale were investigated. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 42 条
  • [1] MEASURING THE NANOMECHANICAL PROPERTIES AND SURFACE FORCES OF MATERIALS USING AN ATOMIC FORCE MICROSCOPE
    BURNHAM, NA
    COLTON, RJ
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1989, 7 (04): : 2906 - 2913
  • [2] Using AFM force-distance curves to study the glass-to-rubber transition of amorphous polymers and their elastic-plastic properties as a function of temperature
    Cappella, B
    Kaliappan, SK
    Sturm, H
    [J]. MACROMOLECULES, 2005, 38 (05) : 1874 - 1881
  • [3] Cheng L, 2000, J POLYM SCI POL PHYS, V38, P10, DOI 10.1002/(SICI)1099-0488(20000101)38:1<10::AID-POLB2>3.0.CO
  • [4] 2-6
  • [5] Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants
    Cook, S. M.
    Schaeffer, T. E.
    Chynoweth, K. M.
    Wigton, M.
    Simmonds, R. W.
    Lang, K. M.
    [J]. NANOTECHNOLOGY, 2006, 17 (09) : 2135 - 2145
  • [6] Ferry J.D., 1980, VISCOELASTIC PROPERT, V3, P672
  • [7] Fischer-Cripps AC, 2004, MECH ENG SERIES, P280
  • [8] Goulding TM, 2003, HDB ADHESIVE TECHNOL, P1024
  • [9] ATOMIC FORCE MICROSCOPY - GENERAL-ASPECTS AND APPLICATION TO INSULATORS
    HEINZELMANN, H
    MEYER, E
    GRUTTER, P
    HIDBER, HR
    ROSENTHALER, L
    GUNTHERODT, HJ
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (02): : 275 - 278
  • [10] Power-Law Stress and Creep Relaxations of Single Cells Measured by Colloidal Probe Atomic Force Microscopy
    Hiratsuka, Shinichiro
    Mizutani, Yusuke
    Toda, Akitoshi
    Fukushima, Norichika
    Kawahara, Koichi
    Tokumoto, Hiroshi
    Okajima, Takaharu
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (08)