Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives

被引:50
作者
Dalal, Nishu [1 ,2 ]
Jalandra, Rekha [1 ,3 ]
Sharma, Minakshi [3 ]
Prakash, Hridayesh [4 ]
Makharia, Govind K. [5 ]
Solanki, Pratima R. [6 ]
Singh, Rajeev [2 ]
Kumar, Anil [1 ]
机构
[1] Natl Inst Immunol, Gene Regulat Lab, New Delhi 110067, India
[2] Delhi Univ, Satyawati Coll, Dept Environm Sci, Delhi 110052, India
[3] Maharshi Dayanand Univ, Dept Zool, Rohtak 124001, Haryana, India
[4] Amity Univ, Amity Inst Virol & Immunol, Sect 125, Noida 201313, Uttar Pradesh, India
[5] All India Inst Med Sci, Dept Gastroenterol & Human Nutr, New Delhi 110029, India
[6] Jawaharlal Nehru Univ, Special Ctr Nanosci, New Delhi 110067, India
关键词
Colorectal cancer; Omics; Transcriptomics; Biomarkers; Microbiota; PROTEOMIC ANALYSIS REVEALS; LYMPH-NODE METASTASIS; MASS-SPECTROMETRY; TRANSCRIPTOME ANALYSIS; PEPTIDE IDENTIFICATION; PROMOTES TUMORIGENESIS; HUMAN COLON; GEN; NOV; BIOMARKERS; CELL;
D O I
10.1016/j.biopha.2020.110648
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Colorectal cancer (CRC) ranks third among the most commonly occurring cancers worldwide, and it causes half a million deaths annually. Alongside mechanistic study for CRC detection and treatment by conventional techniques, new technologies have been developed to study CRC. These technologies include genomics, transcriptomics, proteomics, and metabolomics which elucidate DNA markers, RNA transcripts, protein and, metabolites produced inside the colon and rectum part of the gut. All these approaches form the omics arena, which presents a remarkable opportunity for the discovery of novel prognostic, diagnostic and therapeutic biomarkers and also delineate the underlying mechanism of CRC causation, which may further help in devising treatment strategies. This review also mentions the latest developments in metagenomics and culturomics as emerging evidence suggests that metagenomics of gut microbiota has profound implications in the causation, prognosis, and treatment of CRC. A majority of bacteria cannot be studied as they remain unculturable, so culturomics has also been strengthened to develop culture conditions suitable for the growth of unculturable bacteria and identify unknown bacteria. The overall purpose of this review is to succinctly evaluate the application of omics technologies in colorectal cancer research for improving the diagnosis and treatment strategies.
引用
收藏
页数:15
相关论文
共 148 条
  • [21] Metabolic Profiling of Human Colorectal Cancer Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) Spectroscopy and Gas Chromatography Mass Spectrometry (GC/MS)
    Chan, Eric Chun Yong
    Koh, Poh Koon
    Mal, Mainak
    Cheah, Peh Yean
    Eu, Kong Weng
    Backshall, Alexandra
    Cavill, Rachel
    Nicholson, Jeremy K.
    Keun, Hector C.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2009, 8 (01) : 352 - 361
  • [22] MiR-32 promotes tumorigenesis of colorectal cancer by targeting BMP5
    Chen, Erfei
    Li, Qiqi
    Wang, Hua
    Zhang, Pan
    Zhao, Xiaojuan
    Yang, Fangfang
    Yang, Jin
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2018, 106 : 1046 - 1051
  • [23] MiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study
    Chen, Erfei
    Li, Qiqi
    Wang, Hua
    Yang, Fangfang
    Min, Lulu
    Yang, Jin
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2018, 106 : 1370 - 1377
  • [24] Identification of a novel biomarker-CCL5 using antibody microarray for colorectal cancer
    Chen, Mingxia
    Yang, Xiaoqing
    Yang, Min
    Zhang, Wei
    Li, Lei
    Sun, Qing
    [J]. PATHOLOGY RESEARCH AND PRACTICE, 2019, 215 (05) : 1033 - 1037
  • [25] Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology
    Clark, Andrew E.
    Kaleta, Erin J.
    Arora, Amit
    Wolk, Donna M.
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 2013, 26 (03) : 547 - 603
  • [26] The Ribosomal Database Project: improved alignments and new tools for rRNA analysis
    Cole, J. R.
    Wang, Q.
    Cardenas, E.
    Fish, J.
    Chai, B.
    Farris, R. J.
    Kulam-Syed-Mohideen, A. S.
    McGarrell, D. M.
    Marsh, T.
    Garrity, G. M.
    Tiedje, J. M.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D141 - D145
  • [27] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    [J]. GENOME BIOLOGY, 2016, 17
  • [28] Metabolite identification via the Madison Metabolomics Consortium Database
    Cui, Qiu
    Lewis, Ian A.
    Hegeman, Adrian D.
    Anderson, Mark E.
    Li, Jing
    Schulte, Christopher F.
    Westler, William M.
    Eghbalnia, Hamid R.
    Sussman, Michael R.
    Markley, John L.
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (02) : 162 - 164
  • [29] Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers
    Dai, Zhenwei
    Coker, Olabisi Oluwabukola
    Nakatsu, Geicho
    Wu, William K. K.
    Zhao, Liuyang
    Chen, Zigui
    Chan, Francis K. L.
    Kristiansen, Karsten
    Sung, Joseph J. Y.
    Wong, Sunny Hei
    Yu, Jun
    [J]. MICROBIOME, 2018, 6 : 70
  • [30] Pepitome: Evaluating Improved Spectral Library Search for Identification Complementarity and Quality Assessment
    Dasari, Surendra
    Chambers, Matthew C.
    Martinez, Misti A.
    Carpenter, Kristin L.
    Ham, Amy-Joan L.
    Vega-Montoto, Lorenzo J.
    Tabb, David L.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2012, 11 (03) : 1686 - 1695