A compact streamfunction-velocity scheme for the 2-D unsteady incompressible Navier-Stokes equations in arbitrary curvilinear coordinates

被引:3
作者
Qiu, Jian-xin [1 ]
Peng, Bo [1 ]
Tian, Zhen-fu [1 ]
机构
[1] Fudan Univ, Dept Mech & Engn Sci, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
Streamfunction-velocity formulation; arbitrary curvilinear coordinates; compact scheme; unsteady; incompressible flow; DIFFERENCE SCHEME; FORMULATION; FLOW;
D O I
10.1007/s42241-018-0171-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A streamfunction-velocity formulation-based compact difference method is suggested for solving the unsteady incompressible Navier-Stokes equations in the arbitrary curvilinear coordinates, in which the streamfunction and its first derivatives as the unknown variables are utilized. Numerical examples, involving the boundary layer problem, a constricted channel flow, driven polar cavity flow and trapezoidal cavity flow problem, are solved by the present method. Numerical results demonstrate the accuracy of the proposed scheme and exhibit the numerical capability to simulate the flow problems on geometries beyond rectangular. For driven polar cavity flow problem, the results show that the flow for Re = 5 000 is not steady but time-periodic, and the critical Reynold number (Re-c) for the occurrence of a Hopf bifurcation is given.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 22 条
[1]  
Abdullah S, 2009, COMMUN COMPUT PHYS, V5, P712
[2]   A fully semi-Lagrangian discretization for the 2D incompressible Navier-Stokes equations in the vorticity-streamfunction formulation [J].
Bonaventura, Luca ;
Ferretti, Roberto ;
Rocchi, Lorenzo .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 :132-144
[3]   Recent Developments in the Pure Streamfunction Formulation of the Navier-Stokes System [J].
Fishelov, D. ;
Ben-Artzi, M. ;
Croisille, J-P. .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) :238-258
[4]   NUMERICAL AND EXPERIMENTAL-STUDY OF DRIVEN FLOW IN A POLAR CAVITY [J].
FUCHS, L ;
TILLMARK, N .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1985, 5 (04) :311-329
[5]   Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems [J].
Ge, Yongbin ;
Cao, Fujun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) :4051-4070
[6]  
Guerrero JSP, 2000, COMPUT MECH, V25, P413
[7]   A streamfunction-velocity approach for 2D transient incompressible viscous flows [J].
Kalita, Jiten C. ;
Gupta, Murli M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (03) :237-266
[8]   A central-difference scheme for a pure stream function formulation of incompressible viscous flow [J].
Kupferman, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (01) :1-18
[9]   A study of a numerical solution of the steady two dimensions Navier-Stokes equations in a constricted channel problem by a compact fourth order method [J].
Mancera, PFA .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) :771-790
[10]   STEADY VISCOUS-FLOW IN A TRAPEZOIDAL CAVITY [J].
MCQUAIN, WD ;
RIBBENS, CJ ;
WANG, CY ;
WATSON, LT .
COMPUTERS & FLUIDS, 1994, 23 (04) :613-626