Experimental detection of retinal ganglion cell damage in vivo

被引:16
|
作者
Leung, Christopher Kai-Shun [2 ]
Weinreb, Robert N. [1 ]
机构
[1] Univ Calif San Diego, Dept Ophthalmol, Hamilton Glaucoma Ctr, La Jolla, CA 92093 USA
[2] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Shatin, Hong Kong, Peoples R China
关键词
optic nerve; glaucoma; retinal ganglion cell; OPTIC-NERVE TRANSECTION; EXPERIMENTAL GLAUCOMA; GENE-EXPRESSION; MESSENGER-RNA; RAT; THY-1; MOUSE; DEATH; APOPTOSIS; MICE;
D O I
10.1016/j.exer.2008.09.006
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
In vivo detection of retinal ganglion cell (RGC) damage should have experimental and clinical relevance. A number of experimental models have been recently described to visualize RGCs in vivo. With retrograde injection of fluorescent tracers into the superior colliculus, lateral geniculate body, or optic nerve, RGCs can be detected in vivo with confocal laser scanning microscopy, fluorescent microscopy, or confocal scanning laser ophthalmoscopy. Although the resolution of these imaging techniques is limited to detecting only the cell bodies, the addition of adaptive optics has allowed in vivo visualization of axonal and dendritic processes. An ideal experimental model for detection of RGC damage should be non-invasive and reproducible. The introduction of a strain of transgenic mice that express fluorescent proteins under the control of Thy-1 promoter sequence has offered a non-invasive approach to detect RGCs. Long- term serial monitoring of RGCs over a year has been shown possible with this technique. In vivo imaging of RGCs could provide crucial information to investigating the mechanisms of neurodegenerative diseases and evaluating the treatment response of neuroprotective agents. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 50 条
  • [1] The optical detection of retinal ganglion cell damage
    Morgan, J. E.
    Tribble, J.
    Fergusson, J.
    White, N.
    Erchova, I.
    EYE, 2017, 31 (02) : 199 - 205
  • [2] The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage
    Yokoyama, Yu
    Maruyama, Kazuichi
    Yamamoto, Kotaro
    Omodaka, Kazuko
    Yasuda, Masayuki
    Himori, Noriko
    Ryu, Morin
    Nishiguchi, Koji M.
    Nakazawa, Toru
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 451 (04) : 510 - 515
  • [3] Parvalbumin expression changes with retinal ganglion cell degeneration
    Liu, Yuan
    He, Rossana Cheng
    Munguba, Gustavo C.
    Lee, Richard K.
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [4] THE REPULSIVE GUIDANCE MOLECULE, RGMa, PROMOTES RETINAL GANGLION CELL SURVIVAL IN VITRO AND IN VIVO
    Koeberle, P. D.
    Tura, A.
    Tassew, N. G.
    Schlichter, L. C.
    Monnier, P. P.
    NEUROSCIENCE, 2010, 169 (01) : 495 - 504
  • [5] In vivo imaging of retinal ganglion cell apoptosis
    Galvao, Joana
    Davis, Benjamin M.
    Cordeiro, Maria Francesca
    CURRENT OPINION IN PHARMACOLOGY, 2013, 13 (01) : 123 - 127
  • [6] Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo
    Kanamori, Akiyasu
    Naka, Maiko
    Fukuda, Masahide
    Nakamura, Makoto
    Negi, Akira
    EXPERIMENTAL EYE RESEARCH, 2009, 88 (03) : 535 - 541
  • [7] Nitric oxide: A potential mediator of retinal ganglion cell damage in glaucoma
    Neufeld, AH
    SURVEY OF OPHTHALMOLOGY, 1999, 43 : S129 - S135
  • [8] Retinal Ganglion Cell Death Postponed: Giving Apoptosis a Break?
    Kisiswa, Lilian
    Dervan, Adrian G.
    Albon, Julie
    Morgan, James E.
    Wride, Michael A.
    OPHTHALMIC RESEARCH, 2010, 43 (02) : 61 - 78
  • [9] Age-dependent rat retinal ganglion cell susceptibility to apoptotic stimuli: implications for glaucoma
    Guerin, Marc B.
    Donovan, Maryanne
    McKernan, Declan P.
    O'Brien, Colm J.
    Cotter, Thomas G.
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2011, 39 (03) : 243 - 251
  • [10] Assessing retinal ganglion cell damage
    Smith, C. A.
    Vianna, J. R.
    Chauhan, B. C.
    EYE, 2017, 31 (02) : 209 - 217