On the oscillation of second-order half-linear dynamic equations

被引:108
作者
Grace, Said R. [2 ]
Bohner, Martin [1 ]
Agarwal, Ravi P. [3 ]
机构
[1] Missouri Univ Sci & Technol, Dept Econ & Finance, Rolla, MO USA
[2] Cairo Univ, Fac Engn, Dept Engn Math, Giza 12211, Egypt
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
基金
美国国家科学基金会;
关键词
dynamic equation; half-linear; oscillation; second-order; TIME SCALES; CRITERIA;
D O I
10.1080/10236190802125371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain some oscillation criteria for solutions to the second-order half-linear dynamic equation (a(x(Delta))(alpha))(Delta) (t) + q(t)x(alpha)(t) = 0, when integral(infinity) a(-1/alpha)(s)Delta s = infinity or integral(infinity) a(-1/alpha)(s)Delta s < infinity. These criteria unify and extend known criteria for corresponding half-linear differential and difference equations. Some of our results are new even in the continuous and the discrete cases.
引用
收藏
页码:451 / 460
页数:10
相关论文
共 16 条
[1]  
Agarwal R. P., 2004, MONOGRAPHS TXB PURE
[2]  
Agarwal R. P., 2002, Oscillation Theory for Second Order Linear, Half Linear, Superlinear and Sublinear Dynamic Equations
[3]  
Agarwal R.P., 2005, Can. Appl. Math. Quart, V13, P1
[4]  
Agarwal R. P., 2003, Series in Mathematical Analysis and Applications, V5
[5]   On the oscillation of certain second order difference equations [J].
Agarwal, RP ;
Grace, SR ;
O'Regan, D .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (01) :109-119
[6]  
Akin-Bohner E, 2007, ELECTRON T NUMER ANA, V27, P1
[7]  
[Anonymous], 2005, DISCRETE OSCILLATION, DOI DOI 10.1155/9789775945198
[8]  
[Anonymous], 1959, INEQUALITIES
[9]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[10]   Oscillation criteria for perturbed nonlinear dynamic equations [J].
Bohner, M ;
Saker, SH .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (3-4) :249-260