Estimation of Lyapunov exponents for a system with sensitive friction model

被引:10
|
作者
Wojewoda, Jerzy [1 ]
Stefanski, Andrzej [1 ]
Wiercigroch, Marian [2 ]
Kapitaniak, T [1 ]
机构
[1] Tech Univ Lodz, Div Dynam, PL-90924 Lodz, Poland
[2] Univ Aberdeen, Kings Coll, Ctr Appl Dynam Res, Aberdeen AB24 3UE, Scotland
关键词
Friction; Stick-slip; Lyapunov exponents; Synchronisation; OSCILLATOR; FORCE; MAPS;
D O I
10.1007/s00419-008-0291-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Mathematical modelling and numerical analysis of a vibrating system with dry friction is presented. Three qualitatively different friction characteristics are considered. One of them is an example of so-called sensitive friction characteristic. Their influence on the dynamics on the attractor of the friction oscillator is investigated through bifurcational analysis. This analysis is supported by Lyapunov exponents estimated using approach for the systems with discontinuities. Theoretical background for such a synchronisation-based method of determining the largest Lyapunov exponent is explained. The results obtained through the proposed approach approximate the LLE with a good precision.
引用
收藏
页码:667 / 677
页数:11
相关论文
共 50 条
  • [31] Perturbation Theory for Lyapunov Exponents of an Anderson Model on a Strip
    H. Schulz-Baldes
    Geometric & Functional Analysis GAFA, 2004, 14 : 1089 - 1117
  • [32] Invariant Measures and Lyapunov Exponents for Stochastic Mathieu System
    Haiwu Rong
    Guang Meng
    Xiangdong Wang
    Wei Xu
    Tong Fang
    Nonlinear Dynamics, 2002, 30 : 313 - 321
  • [33] The nature of Lyapunov exponents is ( plus , plus ,-,-). Is it a hyperchaotic system?
    Singh, Jay Prakash
    Roy, B. K.
    CHAOS SOLITONS & FRACTALS, 2016, 92 : 73 - 85
  • [34] LYAPUNOV EXPONENTS OF LINEAR EXTENSIONS OF A DYNAMIC SYSTEM ON A TORUS
    RAKHIMBERDIEV, MI
    MATHEMATICAL NOTES, 1984, 36 (3-4) : 650 - 654
  • [35] LYAPUNOV EXPONENTS - A SURVEY
    ARNOLD, L
    WIHSTUTZ, V
    LECTURE NOTES IN MATHEMATICS, 1986, 1186 : 1 - 26
  • [36] STABILITY OF LYAPUNOV EXPONENTS
    LEDRAPPIER, F
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 : 469 - 484
  • [37] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528
  • [38] Differentiability of Lyapunov Exponents
    Ferraiol, Thiago F.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 289 - 310
  • [39] EXTENDED LYAPUNOV EXPONENTS
    WIESEL, WE
    PHYSICAL REVIEW A, 1992, 46 (12): : 7480 - 7491
  • [40] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672