PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4 p-Type Semiconductor in Cells and the Lung

被引:131
作者
Zhang, Haiyuan [1 ,2 ]
Pokhrel, Suman [5 ]
Ji, Zhaoxia [2 ]
Meng, Huan [3 ]
Wang, Xiang [2 ]
Lin, Sijie [2 ]
Chang, Chong Hyun [2 ]
Li, Linjiang [2 ]
Li, Ruibin [3 ]
Sun, Bingbing [3 ]
Wang, Meiying [3 ]
Liao, Yu-Pei [3 ]
Liu, Rong [4 ]
Xia, Tian [3 ]
Maedler, Lutz [5 ]
Nel, Andre E. [2 ,3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, Biol Chem Lab, Changchun 130022, Jilin, Peoples R China
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Med, Div NanoMed, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[5] Univ Bremen, Dept Prod Engn, Fdn Inst Mat Sci IWT, D-28359 Bremen, Germany
基金
美国国家科学基金会;
关键词
METAL-OXIDE NANOPARTICLES; ANTIBACTERIAL PROPERTIES; WELDING FUMES; ZINC-OXIDE; TOXICITY; CYTOTOXICITY; TIO2; SIZE; NANOMATERIALS; INFLAMMATION;
D O I
10.1021/ja501699e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E, levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 mu g/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E-v, E-c, and E-f levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.
引用
收藏
页码:6406 / 6420
页数:15
相关论文
共 64 条
[1]   Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode [J].
Abdi, Fatwa F. ;
Han, Lihao ;
Smets, Arno H. M. ;
Zeman, Miro ;
Dam, Bernard ;
van de Krol, Roel .
NATURE COMMUNICATIONS, 2013, 4
[2]   Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat [J].
Antonini, JM ;
Murthy, GGK ;
Rogers, RA ;
Albert, R ;
Ulrich, GD ;
Brain, JD .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1996, 140 (01) :188-199
[3]   Statistical methods for analysis of high-throughput RNA interference screens [J].
Birmingham, Amanda ;
Selfors, Laura M. ;
Forster, Thorsten ;
Wrobel, David ;
Kennedy, Caleb J. ;
Shanks, Emma ;
Santoyo-Lopez, Javier ;
Dunican, Dara J. ;
Long, Aideen ;
Kelleher, Dermot ;
Smith, Queta ;
Beijersbergen, Roderick L. ;
Ghazal, Peter ;
Shamu, Caroline E. .
NATURE METHODS, 2009, 6 (08) :569-575
[4]   A review on solid oxide derived from waste shells as catalyst for biodiesel production [J].
Boro, Jutika ;
Deka, Dhanapati ;
Thakur, Ashim J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (01) :904-910
[5]   Comparative Photoactivity and Antibacterial Properties of C60 Fullerenes and Titanium Dioxide Nanoparticles [J].
Brunet, Lena ;
Lyon, Delina Y. ;
Hotze, Ernest M. ;
Alvarez, Pedro J. J. ;
Wiesner, Mark R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (12) :4355-4360
[6]  
Burello E., 2011, NANOBIOTECHNOL, V3, P298
[7]   A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles [J].
Burello, Enrico ;
Worth, Andrew P. .
NANOTOXICOLOGY, 2011, 5 (02) :228-235
[8]   NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis [J].
Cho, W-S. ;
Duffin, R. ;
Bradley, M. ;
Megson, I. L. ;
MacNee, W. ;
Howie, S. E. M. ;
Donaldson, K. .
EUROPEAN RESPIRATORY JOURNAL, 2012, 39 (03) :546-557
[9]   Zeta Potential and Solubility to Toxic Ions as Mechanisms of Lung Inflammation Caused by Metal/Metal Oxide Nanoparticles [J].
Cho, Wan-Seob ;
Duffin, Rodger ;
Thielbeer, Frank ;
Bradley, Mark ;
Megson, Ian L. ;
MacNee, William ;
Poland, Craig A. ;
Tran, C. Lang ;
Donaldson, Ken .
TOXICOLOGICAL SCIENCES, 2012, 126 (02) :469-477
[10]   Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing [J].
Cho, Wan-Seob ;
Duffin, Rodger ;
Poland, Craig A. ;
Howie, Sarah E. M. ;
MacNee, William ;
Bradley, Mark ;
Megson, Ian L. ;
Donaldson, Ken .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (12) :1699-1706