Improved manifold coordinate representations of large-scale hyperspectral scenes

被引:122
|
作者
Bachmann, Charles M. [1 ]
Ainsworth, Thomas L. [1 ]
Fusina, Robert A. [1 ]
机构
[1] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2006年 / 44卷 / 10期
关键词
automatic classification; hyperspectral imagery; isometric mapping (ISOMAP); Jeffries-Matsushita distance; manifold coordinates; manifold geodesics; manifold learning; multidimensional scaling; nonlinear dimensionality reduction; tree searching; trees (graphs); Vantage Point Forest; vantage point tree; Virginia Coast Reserve;
D O I
10.1109/TGRS.2006.881801
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent publications, we have presented a data-driven approach to representing the nonlinear structure of hyperspectral imagery using manifold coordinates. The approach relies on graph methods to derive geodesic distances on the high-dimensional hyperspectral data manifold. From these distances, a set of intrinsic manifold coordinates that parameterizes the data manifold is derived. Scaling the solution relied on divide-conquer-and-merge strategies for the manifold coordinates because of the computational and memory scaling of the geodesic coordinate calculations. In this paper, we improve the scaling performance of isometric mapping (ISOMAP) and achieve full-scene global manifold coordinates while removing artifacts generated by the original methods. The CPU time of the enhanced ISOMAP approach scales as O(N log(2) (N)), where N is the number of samples, while the memory requirement is bounded by O(N log (N)). Full hyperspectral scenes of O(10(6)) samples or greater are obtained via a reconstruction algorithm, which allows insertion of large numbers of samples into a representative "backbone" manifold obtained for a smaller but representative set of O(10(5)) samples. We provide a classification example using a coastal hyperspectral scene to illustrate the approach.
引用
收藏
页码:2786 / 2803
页数:18
相关论文
共 50 条
  • [1] Improved dimensionality reduction algorithm of large-scale hyperspectral scenes using manifold
    Zhang, Jingjing
    Zhou, Xiaoyong
    Liu, Qi
    Guangxue Xuebao/Acta Optica Sinica, 2013, 33 (11):
  • [2] Improved manifold coordinate representations of hyperspectral imagery
    Bachmann, CM
    Ainsworth, TL
    Fusina, RA
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 4307 - 4310
  • [3] On the Role of Representations for Reasoning in Large-Scale Urban Scenes
    Cabezas, Randi
    Blaha, Maros
    Zheng, Sue
    Rosman, Guy
    Schindler, Konrad
    Fisher, John W., III
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1514 - 1523
  • [4] Modeling and representations of large-scale 3D scenes
    Zhu, Zhigang
    Kanade, Takeo
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 78 (2-3) : 119 - 120
  • [5] Modeling and Representations of Large-Scale 3D Scenes
    Zhigang Zhu
    Takeo Kanade
    International Journal of Computer Vision, 2008, 78 : 119 - 120
  • [6] Bathymetric retrieval from manifold coordinate representations of hyperspectral imagery
    Bachmann, Charles M.
    Ainsworth, Thomas L.
    Fusina, Robert A.
    Montes, Marcos J.
    Bowles, Jeffrey H.
    Korwan, Daniel R.
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1548 - 1551
  • [7] Bathymetric Retrieval From Hyperspectral Imagery Using Manifold Coordinate Representations
    Bachmann, Charles M.
    Ainsworth, Thomas L.
    Fusina, Robert A.
    Montes, Marcos J.
    Bowles, Jeffrey H.
    Korwan, Daniel R.
    Gillis, David B.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03): : 884 - 897
  • [8] Large-scale manifold learning
    Talwalkar, Ameet
    Kumar, Sanjiv
    Rowley, Henry
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2554 - +
  • [9] Manifold Coordinate Representations of Hyperspectral Imagery: Improvements in Algorithm Performance and Computational Efficiency
    Bachmann, Charles M.
    Ainsworth, Thomas L.
    Fusina, Robert A.
    Topping, Rusty
    Gates, Tell
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4244 - 4247
  • [10] Large-scale SVD and Manifold Learning
    Talwalkar, Ameet
    Kumar, Sanjiv
    Mohri, Mehryar
    Rowley, Henry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 3129 - 3152